Positivity of the CM line bundle for K-stable log Fanos
HTML articles powered by AMS MathViewer
- by Quentin Posva PDF
- Trans. Amer. Math. Soc. 375 (2022), 4943-4978 Request permission
Abstract:
We prove the bigness of the Chow–Mumford line bundle associated to a $\mathbb {Q}$-Gorenstein family of log Fano varieties of maximal variation with uniformly K-stable general geometric fibers. This result generalizes a theorem of Codogni and Patakfalvi to the logarithmic setting.References
- Jarod Alper, Harold Blum, Daniel Halpern-Leistner, and Chenyang Xu, Reductivity of the automorphism group of $K$-polystable Fano varieties, Invent. Math. 222 (2020), no. 3, 995–1032. MR 4169054, DOI 10.1007/s00222-020-00987-2
- Jarod Alper, Daniel Halpern-Leistern, and Jochen Heinloth, Existence of moduli spaces for algebraic stacks, Preprint, arXiv:1812.01128v3, 2019.
- Jarod Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349–2402 (English, with English and French summaries). MR 3237451, DOI 10.5802/aif.2833
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- Robert J. Berman, K-polystability of ${\Bbb Q}$-Fano varieties admitting Kähler-Einstein metrics, Invent. Math. 203 (2016), no. 3, 973–1025. MR 3461370, DOI 10.1007/s00222-015-0607-7
- Caucher Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 345–463. MR 3997127, DOI 10.4007/annals.2019.190.2.1
- Harold Blum and Mattias Jonsson, Thresholds, valuations, and K-stability, Adv. Math. 365 (2020), 107062, 57. MR 4067358, DOI 10.1016/j.aim.2020.107062
- Harold Blum and Yuchen Liu, Openness of uniform K-stability in families of $\mathbb {Q}$-Fano varieties, Preprint, arXiv:1808.09070v2, 2018. To appear in Ann. Sci. Éc. Norm. Supér.
- Harold Blum, Yuchen Liu, and Chenyang Xu, Openness of K-semistability for Fano varieties, Preprint, arXiv:1907.02408v2, 2019.
- Harold Blum and Chenyang Xu, Uniqueness of K-polystable degenerations of Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 609–656. MR 3997130, DOI 10.4007/annals.2019.190.2.4
- Giulio Codogni and Zsolt Patakfalvi, Positivity of the CM line bundle for families of $K$-stable klt Fano varieties, Invent. Math. 223 (2021), no. 3, 811–894. MR 4213768, DOI 10.1007/s00222-020-00999-y
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091, DOI 10.1007/978-1-4757-5406-3
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506, DOI 10.4310/jdg/1090950195
- Kento Fujita and Yuji Odaka, On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. (2) 70 (2018), no. 4, 511–521. MR 3896135, DOI 10.2748/tmj/1546570823
- Kento Fujita, A valuative criterion for uniform K-stability of $\Bbb Q$-Fano varieties, J. Reine Angew. Math. 751 (2019), 309–338. MR 3956698, DOI 10.1515/crelle-2016-0055
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. MR 3224718, DOI 10.4007/annals.2014.180.2.3
- Chen Jiang, Boundedness of $\Bbb Q$-Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1235–1248 (English, with English and French summaries). MR 4174851, DOI 10.24033/asens.2445
- Finn Faye Knudsen and David Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), no. 1, 19–55. MR 437541, DOI 10.7146/math.scand.a-11642
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235–268. MR 1064874
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- János Kollár, Moduli of varieties of general type, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 131–157. MR 3184176
- János Kollár, Families of divisors, Preprint, arXiv:1910.00937v1, 2019.
- Sándor J. Kovács and Zsolt Patakfalvi, Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension, J. Amer. Math. Soc. 30 (2017), no. 4, 959–1021. MR 3671934, DOI 10.1090/jams/871
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Chi Li, Xiaowei Wang, and Chenyang Xu, Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 3, 739–772 (English, with English and French summaries). MR 3831036, DOI 10.24033/asens.2365
- Chi Li and Chenyang Xu, Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), no. 1, 197–232. MR 3194814, DOI 10.4007/annals.2014.180.1.4
- Yuchen Liu, Chenyang Xu, and Ziquan Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, Preprint, arXiv:2102.09405v2, 2021.
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Yuji Odaka, The GIT stability of polarized varieties via discrepancy, Ann. of Math. (2) 177 (2013), no. 2, 645–661. MR 3010808, DOI 10.4007/annals.2013.177.2.6
- Yuji Odaka, Cristiano Spotti, and Song Sun, Compact moduli spaces of del Pezzo surfaces and Kähler-Einstein metrics, J. Differential Geom. 102 (2016), no. 1, 127–172. MR 3447088
- Zsolt Patakfalvi, Semi-negativity of Hodge bundles associated to Du Bois families, J. Pure Appl. Algebra 219 (2015), no. 12, 5387–5393. MR 3390027, DOI 10.1016/j.jpaa.2015.05.020
- Zsolt Patakfalvi and Chenyang Xu, Ampleness of the CM line bundle on the moduli space of canonically polarized varieties, Algebr. Geom. 4 (2017), no. 1, 29–39. MR 3592464, DOI 10.14231/AG-2017-002
- A. Seidenberg, The hyperplane sections of normal varieties, Trans. Amer. Math. Soc. 69 (1950), 357–386. MR 37548, DOI 10.1090/S0002-9947-1950-0037548-0
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329–353. MR 715656, DOI 10.2969/aspm/00110329
- Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. MR 4088355, DOI 10.4007/annals.2020.191.3.6
- Chenyang Xu and Ziquan Zhuang, On positivity of the CM line bundle on K-moduli spaces, Ann. of Math. (2) 192 (2020), no. 3, 1005–1068. MR 4172625, DOI 10.4007/annals.2020.192.3.7
Additional Information
- Quentin Posva
- Affiliation: École Polytechnique Fédérale de Lausanne, SB MATH CAG, MA C3 595 (Bâtiment MA), Station 8, CH-1015 Lausanne, Switzerland
- Email: quentin.posva@epfl.ch
- Received by editor(s): January 30, 2020
- Received by editor(s) in revised form: January 20, 2021, August 12, 2021, September 29, 2021, and December 21, 2021
- Published electronically: April 21, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4943-4978
- MSC (2020): Primary 14J45, 14J10, 14D06
- DOI: https://doi.org/10.1090/tran/8640
- MathSciNet review: 4439496