Nonlinear stability of planar steady Euler flows associated with semistable solutions of elliptic problems
HTML articles powered by AMS MathViewer
- by Guodong Wang PDF
- Trans. Amer. Math. Soc. 375 (2022), 5071-5095 Request permission
Abstract:
This paper is devoted to the study of nonlinear stability of steady incompressible Euler flows in two dimensions. We prove that a steady Euler flow is nonlinearly stable in $L^p$ norm of the vorticity if its stream function is a semistable solution of some semilinear elliptic problem with nondecreasing nonlinearity. The idea of the proof is to show that such a flow has strict local maximum energy among flows whose vorticities are rearrangements of a given function, with the help of an improved version of Wolansky and Ghil’s stability theorem. The result can be regarded as an extension of Arnol’d’s second stability theorem.References
- V. I. Arnol’d, Conditions for nonlinear stability plane curvilinear flow of an idea fluid, Sov. Math. Dokl. 6 (1965), 773–777.
- V. I. Arnol’d, On an a priori estimate in the theory of hydrodynamical stability, Amer. Math. Soc. Transl. 79 (1969), 267–269.
- C. Bardos, Y. Guo, and W. Strauss, Stable and unstable ideal plane flows, Chinese Ann. Math. Ser. B 23 (2002), no. 2, 149–164. Dedicated to the memory of Jacques-Louis Lions. MR 1924132, DOI 10.1142/S0252959902000158
- G. R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings, Math. Ann. 276 (1987), no. 2, 225–253. MR 870963, DOI 10.1007/BF01450739
- G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 4, 295–319 (English, with French summary). MR 998605, DOI 10.1016/s0294-1449(16)30320-1
- G. R. Burton, Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex, Acta Math. 163 (1989), no. 3-4, 291–309. MR 1032076, DOI 10.1007/BF02392738
- G. R. Burton, Global nonlinear stability for steady ideal fluid flow in bounded planar domains, Arch. Ration. Mech. Anal. 176 (2005), no. 2, 149–163. MR 2186035, DOI 10.1007/s00205-004-0339-0
- G. R. Burton and J. B. McLeod, Maximisation and minimisation on classes of rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 3-4, 287–300. MR 1135975, DOI 10.1017/S0308210500014840
- Xavier Cabré, Regularity of radial extremal solutions of semilinear elliptic equations, Bol. Soc. Esp. Mat. Apl. SeMA 34 (2006), 92–98. MR 2296206
- Xavier Cabré and Antonio Capella, Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, J. Funct. Anal. 238 (2006), no. 2, 709–733. MR 2253739, DOI 10.1016/j.jfa.2005.12.018
- Daomin Cao, Zhongyuan Liu, and Juncheng Wei, Regularization of point vortices pairs for the Euler equation in dimension two, Arch. Ration. Mech. Anal. 212 (2014), no. 1, 179–217. MR 3162476, DOI 10.1007/s00205-013-0692-y
- Daomin Cao, Shuangjie Peng, and Shusen Yan, Planar vortex patch problem in incompressible steady flow, Adv. Math. 270 (2015), 263–301. MR 3286537, DOI 10.1016/j.aim.2014.09.027
- Daomin Cao, Shuangjie Peng, and Shusen Yan, Regularization of planar vortices for the incompressible flow, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 5, 1443–1467. MR 3830743, DOI 10.1016/S0252-9602(18)30827-0
- Daomin Cao and Guodong Wang, Steady vortex patches with opposite rotation directions in a planar ideal fluid, Calc. Var. Partial Differential Equations 58 (2019), no. 2, Paper No. 75, 17. MR 3927130, DOI 10.1007/s00526-019-1503-6
- Daomin Cao and Guodong Wang, A note on steady vortex flows in two dimensions, Proc. Amer. Math. Soc. 148 (2020), no. 3, 1153–1159. MR 4055942, DOI 10.1090/proc/14776
- Daomin Cao and Guodong Wang, Nonlinear stability of planar vortex patches in an ideal fluid, J. Math. Fluid Mech. 23 (2021), no. 3, Paper No. 58, 16. MR 4257854, DOI 10.1007/s00021-021-00588-w
- Daomin Cao, Guodong Wang, and Weicheng Zhan, Desingularization of vortices for two-dimensional steady Euler flows via the vorticity method, SIAM J. Math. Anal. 52 (2020), no. 6, 5363–5388. MR 4169262, DOI 10.1137/19M1292151
- Jean-Marc Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553–586 (French). MR 1102579, DOI 10.1090/S0894-0347-1991-1102579-6
- Ronald J. DiPerna and Andrew J. Majda, Concentrations in regularizations for $2$-D incompressible flow, Comm. Pure Appl. Math. 40 (1987), no. 3, 301–345. MR 882068, DOI 10.1002/cpa.3160400304
- Alan R. Elcrat and Kenneth G. Miller, Rearrangements in steady multiple vortex flows, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1481–1490. MR 1349221, DOI 10.1080/03605309508821141
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- Herbert Koch, Transport and instability for perfect fluids, Math. Ann. 323 (2002), no. 3, 491–523. MR 1923695, DOI 10.1007/s002080200312
- Zhiwu Lin, Instability of some ideal plane flows, SIAM J. Math. Anal. 35 (2003), no. 2, 318–356. MR 2001104, DOI 10.1137/S0036141002406266
- Zhiwu Lin, Some stability and instability criteria for ideal plane flows, Comm. Math. Phys. 246 (2004), no. 1, 87–112. MR 2044892, DOI 10.1007/s00220-004-1045-3
- Zhiwu Lin, Nonlinear instability of ideal plane flows, Int. Math. Res. Not. 41 (2004), 2147–2178. MR 2078852, DOI 10.1155/S107379280414018X
- Didier Smets and Jean Van Schaftingen, Desingularization of vortices for the Euler equation, Arch. Ration. Mech. Anal. 198 (2010), no. 3, 869–925. MR 2729322, DOI 10.1007/s00205-010-0293-y
- Bruce Turkington, On steady vortex flow in two dimensions. I, II, Comm. Partial Differential Equations 8 (1983), no. 9, 999–1030, 1031–1071. MR 702729, DOI 10.1080/03605308308820293
- G. Wang, Orbital stability of 2D steady Euler flows related to least energy solutions of the Lane-Emden equation, arXiv:2104.12406.
- G. Wolansky and M. Ghil, An extension of Arnol′d’s second stability theorem for the Euler equations, Phys. D 94 (1996), no. 4, 161–167. MR 1398637, DOI 10.1016/0167-2789(95)00312-6
- G. Wolansky and M. Ghil, Nonlinear stability for saddle solutions of ideal flows and symmetry breaking, Comm. Math. Phys. 193 (1998), no. 3, 713–736. MR 1624863, DOI 10.1007/s002200050345
- W. Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z. 37 (1933), no. 1, 698–726 (French). MR 1545430, DOI 10.1007/BF01474610
- V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963), 1032–1066 (Russian). MR 158189
Additional Information
- Guodong Wang
- Affiliation: Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- Email: wangguodong@hit.edu.cn
- Received by editor(s): July 30, 2021
- Received by editor(s) in revised form: October 15, 2021, and December 31, 2021
- Published electronically: April 26, 2022
- Additional Notes: The author was supported by National Natural Science Foundation of China (12001135, 12071098) and China Postdoctoral Science Foundation (2019M661261, 2021T140163).
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5071-5095
- MSC (2020): Primary 35Q35, 76E30, 76B47
- DOI: https://doi.org/10.1090/tran/8652
- MathSciNet review: 4439499