Distality in valued fields and related structures
HTML articles powered by AMS MathViewer
- by Matthias Aschenbrenner, Artem Chernikov, Allen Gehret and Martin Ziegler PDF
- Trans. Amer. Math. Soc. 375 (2022), 4641-4710 Request permission
Abstract:
We investigate distality and existence of distal expansions in valued fields and related structures. In particular, we characterize distality in a large class of ordered abelian groups, provide an Ax-Kochen-Eršov-style characterization for henselian valued fields, and demonstrate that certain expansions of fields, e.g., the differential field of logarithmic-exponential transseries, are distal. As a new tool for analyzing valued fields we employ a relative quantifier elimination for pure short exact sequences of abelian groups.References
- S. Anscombe and F. Jahnke, Characterizing NIP henselian fields, arXiv:1911.00309 (2019).
- Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven, Asymptotic differential algebra and model theory of transseries, Annals of Mathematics Studies, vol. 195, Princeton University Press, Princeton, NJ, 2017. MR 3585498, DOI 10.1515/9781400885411
- Yerzhan Baisalov and Bruno Poizat, Paires de structures o-minimales, J. Symbolic Logic 63 (1998), no. 2, 570–578 (French, with Esperanto summary). MR 1627306, DOI 10.2307/2586850
- Eberhard Becker, Euklidische Körper und euklidische Hüllen von Körpern, J. Reine Angew. Math. 268(269) (1974), 41–52 (German). MR 354625, DOI 10.1515/crll.1974.268-269.41
- Luc Bélair, Types dans les corps valués munis d’applications coefficients, Illinois J. Math. 43 (1999), no. 2, 410–425 (French, with English summary). MR 1703196
- Gareth Boxall and Charlotte Kestner, The definable $(P,Q)$-theorem for distal theories, J. Symb. Log. 83 (2018), no. 1, 123–127. MR 3796278, DOI 10.1017/jsl.2016.72
- G. Boxall and C. Kestner, Theories with distal Shelah expansions, arXiv:1801.02346 (2018).
- Q. Brouette, Differential algebra, ordered fields and model theory, Ph.D. Thesis, 2015.
- A. Chernikov, Indiscernible sequences and arrays in valued fields, RIMS Kokyuroku 1718 (2010), 127–131.
- Artem Chernikov, Theories without the tree property of the second kind, Ann. Pure Appl. Logic 165 (2014), no. 2, 695–723. MR 3129735, DOI 10.1016/j.apal.2013.10.002
- Artem Chernikov, David Galvin, and Sergei Starchenko, Cutting lemma and Zarankiewicz’s problem in distal structures, Selecta Math. (N.S.) 26 (2020), no. 2, Paper No. 25, 27. MR 4079189, DOI 10.1007/s00029-020-0551-2
- Artem Chernikov, Itay Kaplan, and Pierre Simon, Groups and fields with $\textrm {NTP}_2$, Proc. Amer. Math. Soc. 143 (2015), no. 1, 395–406. MR 3272764, DOI 10.1090/S0002-9939-2014-12229-5
- Artem Chernikov and Pierre Simon, Externally definable sets and dependent pairs, Israel J. Math. 194 (2013), no. 1, 409–425. MR 3047077, DOI 10.1007/s11856-012-0061-9
- Artem Chernikov and Pierre Simon, Externally definable sets and dependent pairs II, Trans. Amer. Math. Soc. 367 (2015), no. 7, 5217–5235. MR 3335415, DOI 10.1090/S0002-9947-2015-06210-2
- Artem Chernikov and Pierre Simon, Henselian valued fields and inp-minimality, J. Symb. Log. 84 (2019), no. 4, 1510–1526. MR 4045986, DOI 10.1017/jsl.2019.56
- A. Chernikov and P. Simon, Distal expansions of some stable theories, 2020+.
- Artem Chernikov and Sergei Starchenko, Regularity lemma for distal structures, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 10, 2437–2466. MR 3852184, DOI 10.4171/JEMS/816
- Artem Chernikov and Sergei Starchenko, Model-theoretic Elekes-Szabó in the strongly minimal case, J. Math. Log. 21 (2021), no. 2, Paper No. 2150004, 20. MR 4290493, DOI 10.1142/S0219061321500045
- Raf Cluckers and Immanuel Halupczok, Quantifier elimination in ordered abelian groups, Confluentes Math. 3 (2011), no. 4, 587–615. MR 2899905, DOI 10.1142/S1793744211000473
- Raf Cluckers, Leonard Lipshitz, and Zachary Robinson, Analytic cell decomposition and analytic motivic integration, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 4, 535–568 (English, with English and French summaries). MR 2290137, DOI 10.1016/j.ansens.2006.03.001
- P. Cubides-Kovasics and F. Point, Topological fields with a generic derivation, arXiv:1912.07912 (2019).
- Françoise Delon, Types sur $\textbf {C}((X))$, Study Group on Stable Theories (Bruno Poizat), Second year: 1978/79 (French), Secrétariat Math., Paris, 1981, pp. Exp. No. 5, 29 (French). MR 620032
- Françoise Delon and Rafel Farré, Some model theory for almost real closed fields, J. Symbolic Logic 61 (1996), no. 4, 1121–1152. MR 1456099, DOI 10.2307/2275808
- J. Denef and L. van den Dries, $p$-adic and real subanalytic sets, Ann. of Math. (2) 128 (1988), no. 1, 79–138. MR 951508, DOI 10.2307/1971463
- Alfred Dolich and John Goodrick, A characterization of strongly dependent ordered Abelian groups, Rev. Colombiana Mat. 52 (2018), no. 2, 139–159 (English, with English and Spanish summaries). MR 3909316, DOI 10.15446/recolma.v52n2.77154
- Lou van den Dries, Deirdre Haskell, and Dugald Macpherson, One-dimensional $p$-adic subanalytic sets, J. London Math. Soc. (2) 59 (1999), no. 1, 1–20. MR 1688485, DOI 10.1112/S0024610798006917
- Katharina Dupont, Assaf Hasson, and Salma Kuhlmann, Definable valuations induced by multiplicative subgroups and NIP fields, Arch. Math. Logic 58 (2019), no. 7-8, 819–839. MR 4003636, DOI 10.1007/s00153-019-00661-2
- Antonio J. Engler and Alexander Prestel, Valued fields, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. MR 2183496
- Pedro Andrés Estevan and Itay Kaplan, Non-forking and preservation of NIP and dp-rank, Ann. Pure Appl. Logic 172 (2021), no. 6, Paper No. 102946, 30. MR 4216280, DOI 10.1016/j.apal.2021.102946
- R. Farré, Strong ordered abelian groups and dp-rank, arXiv:1706.05471 (2017).
- Edward R. Fisher, Abelian structures. I, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 270–322. MR 0540014
- Joseph Flenner, Relative decidability and definability in Henselian valued fields, J. Symbolic Logic 76 (2011), no. 4, 1240–1260. MR 2895394, DOI 10.2178/jsl/1318338847
- Antongiulio Fornasiero and Elliot Kaplan, Generic derivations on o-minimal structures, J. Math. Log. 21 (2021), no. 2, Paper No. 2150007, 45. MR 4290496, DOI 10.1142/S0219061321500070
- Allen Gehret and Elliot Kaplan, Distality for the asymptotic couple of the field of logarithmic transseries, Notre Dame J. Form. Log. 61 (2020), no. 2, 341–361. MR 4092539, DOI 10.1215/00294527-2020-0010
- Y. Gurevich and P. H. Schmitt, The theory of ordered abelian groups does not have the independence property, Trans. Amer. Math. Soc. 284 (1984), no. 1, 171–182. MR 742419, DOI 10.1090/S0002-9947-1984-0742419-0
- Nicolas Guzy and Françoise Point, Topological differential fields, Ann. Pure Appl. Logic 161 (2010), no. 4, 570–598. MR 2584734, DOI 10.1016/j.apal.2009.08.001
- Yatir Halevi and Assaf Hasson, Strongly dependent ordered abelian groups and Henselian fields, Israel J. Math. 232 (2019), no. 2, 719–758. MR 3990957, DOI 10.1007/s11856-019-1885-3
- Yatir Halevi, Assaf Hasson, and Franziska Jahnke, Definable $V$-topologies, Henselianity and NIP, J. Math. Log. 20 (2020), no. 2, 2050008, 33. MR 4128721, DOI 10.1142/S0219061320500087
- I. Halupczok, A language for quantifier elimination in ordered abelian groups, Sémin. Structures Algébriques Ordonnées 2010 (2009).
- Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741, DOI 10.1017/CBO9780511551574
- Jizhan Hong, Definable non-divisible Henselian valuations, Bull. Lond. Math. Soc. 46 (2014), no. 1, 14–18. MR 3161758, DOI 10.1112/blms/bdt074
- F. Jahnke, When does NIP transfer from fields to henselian expansions?, arXiv:1607.02953 (2016).
- Franziska Jahnke and Jochen Koenigsmann, Definable Henselian valuations, J. Symb. Log. 80 (2015), no. 1, 85–99. MR 3320584, DOI 10.1017/jsl.2014.64
- Franziska Jahnke and Jochen Koenigsmann, Uniformly defining $p$-henselian valuations, Ann. Pure Appl. Logic 166 (2015), no. 7-8, 741–754. MR 3344577, DOI 10.1016/j.apal.2015.03.003
- Franziska Jahnke, Pierre Simon, and Erik Walsberg, Dp-minimal valued fields, J. Symb. Log. 82 (2017), no. 1, 151–165. MR 3631280, DOI 10.1017/jsl.2016.15
- W. Johnson, On dp-minimal fields, arXiv:1507.02745 (2015).
- William Andrew Johnson, Fun with Fields, ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–University of California, Berkeley. MR 3564042
- Itay Kaplan, Thomas Scanlon, and Frank O. Wagner, Artin-Schreier extensions in NIP and simple fields, Israel J. Math. 185 (2011), 141–153. MR 2837131, DOI 10.1007/s11856-011-0104-7
- Itay Kaplan, Saharon Shelah, and Pierre Simon, Exact saturation in simple and NIP theories, J. Math. Log. 17 (2017), no. 1, 1750001, 18. MR 3651210, DOI 10.1142/S0219061317500015
- J. Koenigsmann, Elementary characterization of fields by their absolute Galois group, Siberian Adv. Math. 14 (2004), no. 3, 16–42. MR 2122363
- Franz-Viktor Kuhlmann and Salma Kuhlmann, Ax-Kochen-Ershov principles for valued and ordered vector spaces, Ordered algebraic structures (Curaçao, 1995) Kluwer Acad. Publ., Dordrecht, 1997, pp. 237–259. MR 1445115
- T. Y. Lam, A first course in noncommutative rings, 2nd ed., Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001. MR 1838439, DOI 10.1007/978-1-4419-8616-0
- Christian Michaux and Cédric Rivière, Quelques remarques concernant la théorie des corps ordonnés différentiellement clos, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no. 3, 341–348 (French, with English and French summaries). MR 2173697
- Alf Onshuus and Alexander Usvyatsov, On dp-minimality, strong dependence and weight, J. Symbolic Logic 76 (2011), no. 3, 737–758. MR 2849244, DOI 10.2178/jsl/1309952519
- Alexander Prestel and Peter Roquette, Formally $p$-adic fields, Lecture Notes in Mathematics, vol. 1050, Springer-Verlag, Berlin, 1984. MR 738076, DOI 10.1007/BFb0071461
- N. Pynn-Coates, A model complete theory of pre-$H$-fields with gap $0$, arXiv:1910.12171 (2019).
- Silvain Rideau, Some properties of analytic difference valued fields, J. Inst. Math. Jussieu 16 (2017), no. 3, 447–499. MR 3646280, DOI 10.1017/S1474748015000183
- Cédric Rivière, The theory of closed ordered differential fields with $m$ commuting derivations, C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 151–154 (English, with English and French summaries). MR 2246330, DOI 10.1016/j.crma.2006.06.019
- Abraham Robinson and Elias Zakon, Elementary properties of ordered abelian groups, Trans. Amer. Math. Soc. 96 (1960), 222–236. MR 114855, DOI 10.1090/S0002-9947-1960-0114855-0
- Saharon Shelah, Dependent first order theories, continued, Israel J. Math. 173 (2009), 1–60. MR 2570659, DOI 10.1007/s11856-009-0082-1
- Pierre Simon, On dp-minimal ordered structures, J. Symbolic Logic 76 (2011), no. 2, 448–460. MR 2830411, DOI 10.2178/jsl/1305810758
- Pierre Simon, Distal and non-distal NIP theories, Ann. Pure Appl. Logic 164 (2013), no. 3, 294–318. MR 3001548, DOI 10.1016/j.apal.2012.10.015
- Pierre Simon, A guide to NIP theories, Lecture Notes in Logic, vol. 44, Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015. MR 3560428, DOI 10.1017/CBO9781107415133
- Michael F. Singer, A class of differential fields with minimal differential closures, Proc. Amer. Math. Soc. 69 (1978), no. 2, 319–322. MR 465851, DOI 10.1090/S0002-9939-1978-0465851-4
- Michael F. Singer, The model theory of ordered differential fields, J. Symbolic Logic 43 (1978), no. 1, 82–91. MR 495120, DOI 10.2307/2271951
- Csaba D. Tóth, The Szemerédi-Trotter theorem in the complex plane, Combinatorica 35 (2015), no. 1, 95–126. MR 3341142, DOI 10.1007/s00493-014-2686-2
- Marcus Tressl, The uniform companion for large differential fields of characteristic 0, Trans. Amer. Math. Soc. 357 (2005), no. 10, 3933–3951. MR 2159694, DOI 10.1090/S0002-9947-05-03981-4
- Omar León Sánchez and Marcus Tressl, Differential Weil descent, Comm. Algebra 50 (2022), no. 1, 104–114. MR 4370416, DOI 10.1080/00927872.2021.1955898
- Seth Warner, Topological rings, North-Holland Mathematics Studies, vol. 178, North-Holland Publishing Co., Amsterdam, 1993. MR 1240057
- V. Weispfenning, Quantifier elimination for abelian structures, 1983. Unpublished manuscript.
- V. Weispfenning, Quantifier eliminable ordered abelian groups, Algebra and order (Luminy-Marseille, 1984) Res. Exp. Math., vol. 14, Heldermann, Berlin, 1986, pp. 113–126. MR 891454
- Joshua Zahl, A Szemerédi-Trotter type theorem in $\Bbb {R}^4$, Discrete Comput. Geom. 54 (2015), no. 3, 513–572. MR 3392965, DOI 10.1007/s00454-015-9717-7
- Elias Zakon, Generalized archimedean groups, Trans. Amer. Math. Soc. 99 (1961), 21–40. MR 120294, DOI 10.1090/S0002-9947-1961-0120294-X
- Martin Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), no. 2, 149–213. MR 739577, DOI 10.1016/0168-0072(84)90014-9
Additional Information
- Matthias Aschenbrenner
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095
- Address at time of publication: Kurt Gödel Research Center for Mathematical Logic, Universität Wien, 1090 Wien, Austria
- MR Author ID: 659909
- ORCID: 0000-0001-5895-5254
- Email: matthias.aschenbrenner@univie.ac.at
- Artem Chernikov
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095
- MR Author ID: 974787
- ORCID: 0000-0002-9136-8737
- Email: chernikov@math.ucla.edu
- Allen Gehret
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095
- Address at time of publication: Kurt Gödel Research Center for Mathematical Logic, Universität Wien, 1090 Wien, Austria
- MR Author ID: 1184147
- ORCID: 0000-0001-9627-6519
- Email: allen.gehret@univie.ac.at
- Martin Ziegler
- Affiliation: Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Abteilung für Mathematische Logik, 79104 Freiburg, Germany
- MR Author ID: 210569
- Email: ziegler@uni-freiburg.de
- Received by editor(s): September 3, 2020
- Received by editor(s) in revised form: September 30, 2021
- Published electronically: May 4, 2022
- Additional Notes: The first author was partially supported by NSF Research Grant DMS-1700439. The second author was partially supported by NSF Research Grant DMS-1600796, by NSF CAREER Grant DMS-1651321, an Alfred P. Sloan Fellowship, and a Simons Fellowship. The third author was partially supported by NSF Award No. 1703709.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4641-4710
- MSC (2020): Primary 03C45, 03C60; Secondary 12L12, 12J25
- DOI: https://doi.org/10.1090/tran/8661
- MathSciNet review: 4439488