On the multiparameter Falconer distance problem
HTML articles powered by AMS MathViewer
- by Xiumin Du, Yumeng Ou and Ruixiang Zhang PDF
- Trans. Amer. Math. Soc. 375 (2022), 4979-5010 Request permission
Abstract:
We study an extension of the Falconer distance problem in the multiparameter setting. Given $\ell \geq 1$ and $\mathbb {R}^{d}=\mathbb {R}^{d_1}\times \cdots \times \mathbb {R}^{d_\ell }$, $d_i\geq 2$. For any compact set $E\subset \mathbb {R}^{d}$ with Hausdorff dimension larger than $d-\frac {\operatorname {min}(d_i)}{2}+\frac {1}{4}$ if $\operatorname {min}(d_i)$ is even, $d-\frac {\operatorname {min}(d_i)}{2}+\frac {1}{4} +\frac {1}{4\operatorname {min}(d_i)}$ if $\operatorname {min}(d_i)$ is odd, we prove that the multiparameter distance set of $E$ has positive $\ell$-dimensional Lebesgue measure. A key ingredient in the proof is a new multiparameter radial projection theorem for fractal measures.References
- Philipp Birklbauer and Alex Iosevich, A two-parameter finite field Erdős-Falconer distance problem, Bull. Hellenic Math. Soc. 61 (2017), 21–30. MR 3673208
- Jean Bourgain, Hausdorff dimension and distance sets, Israel J. Math. 87 (1994), no. 1-3, 193–201. MR 1286826, DOI 10.1007/BF02772994
- Jean Bourgain and Ciprian Demeter, The proof of the $l^2$ decoupling conjecture, Ann. of Math. (2) 182 (2015), no. 1, 351–389. MR 3374964, DOI 10.4007/annals.2015.182.1.9
- Roy O. Davies and Henryk Fast, Lebesgue density influences Hausdorff measure; large sets surface-like from many directions, Mathematika 25 (1978), no. 1, 116–119. MR 492190, DOI 10.1112/S0025579300009335
- Xiumin Du, Larry Guth, Yumeng Ou, Hong Wang, Bobby Wilson, and Ruixiang Zhang, Weighted restriction estimates and application to Falconer distance set problem, Amer. J. Math. 143 (2021), no. 1, 175–211. MR 4201782, DOI 10.1353/ajm.2021.0005
- Xiumin Du, Alex Iosevich, Yumeng Ou, Hong Wang, and Ruixiang Zhang, An improved result for Falconer’s distance set problem in even dimensions, Math. Ann. 380 (2021), no. 3-4, 1215–1231. MR 4297185, DOI 10.1007/s00208-021-02170-1
- Xiumin Du and Ruixiang Zhang, Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions, Ann. of Math. (2) 189 (2019), no. 3, 837–861. MR 3961084, DOI 10.4007/annals.2019.189.3.4
- M. Burak Erdog̃an, A bilinear Fourier extension theorem and applications to the distance set problem, Int. Math. Res. Not. 23 (2005), 1411–1425. MR 2152236, DOI 10.1155/IMRN.2005.1411
- K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), no. 2, 206–212 (1986). MR 834490, DOI 10.1112/S0025579300010998
- C. Francois, H. Mojarrad, D. Pham, C. Shen, On the two-parameter Erdős-Falconer distance problem over finite fields, arXiv:2101.10959, 2021.
- Larry Guth, Alex Iosevich, Yumeng Ou, and Hong Wang, On Falconer’s distance set problem in the plane, Invent. Math. 219 (2020), no. 3, 779–830. MR 4055179, DOI 10.1007/s00222-019-00917-x
- Larry Guth and Nets Hawk Katz, On the Erdős distinct distances problem in the plane, Ann. of Math. (2) 181 (2015), no. 1, 155–190. MR 3272924, DOI 10.4007/annals.2015.181.1.2
- T. Harris, Improved bounds for restricted projection families via weighted Fourier restriction, arXiv:1911.00615, 2019.
- K. Hambrook, A. Iosevich, and A. Rice, Group actions and a multi-parameter Falconer distance problem, arXiv:1705.03871, 2017.
- K. Hambrook, A. Iosevich, and A. Rice, Personal communication, 2021.
- A. Iosevich, M. Janczak, J. Passant, A multi-parameter variant of the Erdős distance problem, arXiv:1712.04060, 2017.
- R. Kaufman and P. Mattila, Hausdorff dimension and exceptional sets of linear transformations, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 387–392. MR 0407248, DOI 10.5186/aasfm.1975.0105
- Bochen Liu, An $L^2$-identity and pinned distance problem, Geom. Funct. Anal. 29 (2019), no. 1, 283–294. MR 3925111, DOI 10.1007/s00039-019-00482-8
- Bochen Liu, Hausdorff dimension of pinned distance sets and the $L^2$-method, Proc. Amer. Math. Soc. 148 (2020), no. 1, 333–341. MR 4042855, DOI 10.1090/proc/14740
- Pertti Mattila, On the Hausdorff dimension and capacities of intersections, Mathematika 32 (1985), no. 2, 213–217 (1986). MR 834491, DOI 10.1112/S0025579300011001
- Pertti Mattila, Hausdorff dimension, projections, and the Fourier transform, Publ. Mat. 48 (2004), no. 1, 3–48. MR 2044636, DOI 10.5565/PUBLMAT_{4}8104_{0}1
- Pertti Mattila, Fourier analysis and Hausdorff dimension, Cambridge Studies in Advanced Mathematics, vol. 150, Cambridge University Press, Cambridge, 2015. MR 3617376, DOI 10.1017/CBO9781316227619
- Pertti Mattila and Tuomas Orponen, Hausdorff dimension, intersections of projections and exceptional plane sections, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3419–3430. MR 3503710, DOI 10.1090/proc/12985
- Tuomas Orponen, A sharp exceptional set estimate for visibility, Bull. Lond. Math. Soc. 50 (2018), no. 1, 1–6. MR 3778538, DOI 10.1112/blms.12103
- Tuomas Orponen, On the dimension and smoothness of radial projections, Anal. PDE 12 (2019), no. 5, 1273–1294. MR 3892404, DOI 10.2140/apde.2019.12.1273
- Pablo Shmerkin, Improved bounds for the dimensions of planar distance sets, J. Fractal Geom. 8 (2021), no. 1, 27–51. MR 4226184, DOI 10.4171/jfg/97
- Thomas Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices 10 (1999), 547–567. MR 1692851, DOI 10.1155/S1073792899000288
Additional Information
- Xiumin Du
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 1234739
- ORCID: setImmediate$0.9884010903214075$2
- Yumeng Ou
- Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- MR Author ID: 1112799
- Ruixiang Zhang
- Affiliation: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
- MR Author ID: 942634
- Received by editor(s): June 24, 2021
- Received by editor(s) in revised form: December 28, 2021
- Published electronically: May 4, 2022
- Additional Notes: The first author was supported by NSF DMS-2107729. The second author was supported by NSF DMS-2042109. The third author was supported by the NSF grant DMS-1856541, DMS-1926686 and by the Ky Fan and Yu-Fen Fan Endowment Fund at the Institute for Advanced Study.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4979-5010
- MSC (2020): Primary 42B20, 28A80
- DOI: https://doi.org/10.1090/tran/8667
- MathSciNet review: 4439497