On realization of isometries for higher rank quadratic lattices over number fields
HTML articles powered by AMS MathViewer
- by Wai Kiu Chan and Han Li PDF
- Trans. Amer. Math. Soc. 375 (2022), 4619-4640 Request permission
Abstract:
Let $F$ be a number field, and $n\geq 3$ be an integer. In this paper we give an effective procedure which (1) determines whether two given quadratic lattices on $F^n$ are isometric or not, and (2) produces an invertible linear transformation realizing the isometry provided the two given lattices are isometric. A key ingredient in our approach is a search bound for the equivalence of two given quadratic forms over number fields which we prove using methods from algebraic groups, homogeneous dynamics and spectral theory of automorphic forms.References
- Menny Aka, Manfred Einsiedler, Han Li, and Amir Mohammadi, On effective equidistribution for quotients of $\textrm {SL}(d,\Bbb {R})$, Israel J. Math. 236 (2020), no. 1, 365–391. MR 4093891, DOI 10.1007/s11856-020-1978-z
- Valentin Blomer and Farrell Brumley, On the Ramanujan conjecture over number fields, Ann. of Math. (2) 174 (2011), no. 1, 581–605. MR 2811610, DOI 10.4007/annals.2011.174.1.18
- M. Burger and P. Sarnak, Ramanujan duals. II, Invent. Math. 106 (1991), no. 1, 1–11. MR 1123369, DOI 10.1007/BF01243900
- J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 522835
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Henri Cohen, Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp. 65 (1996), no. 216, 1681–1699. MR 1361805, DOI 10.1090/S0025-5718-96-00766-1
- S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), no. 1, 1–17. MR 1101994, DOI 10.1007/BF02872005
- Rainer Dietmann, Small solutions of quadratic Diophantine equations, Proc. London Math. Soc. (3) 86 (2003), no. 3, 545–582. MR 1974390, DOI 10.1112/S0024611502013898
- Rainer Dietmann, Polynomial bounds for equivalence of quadratic forms with cube-free determinant, Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 3, 521–532. MR 2373956, DOI 10.1017/S0305004107000710
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654, DOI 10.1007/BFb0058988
- H. H. Kim, P. Sarnak: Refined estimates towards the Ramanujan and Selberg conjectures, Appendix to Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$. J. Amer. Math. Soc. 16 (2003), no. 1, 139-183.
- D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinaĭ’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, Amer. Math. Soc., Providence, RI, 1996, pp. 141–172. MR 1359098, DOI 10.1090/trans2/171/11
- Alex Kontorovich and Hee Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc. 24 (2011), no. 3, 603–648. With an appendix by Oh and Nimish Shah. MR 2784325, DOI 10.1090/S0894-0347-2011-00691-7
- Alex Kontorovich and Hee Oh, Almost prime Pythagorean triples in thin orbits, J. Reine Angew. Math. 667 (2012), 89–131. MR 2929673, DOI 10.1515/crelle.2011.128
- Han Li and Gregory A. Margulis, Effective estimates on integral quadratic forms: Masser’s conjecture, generators of orthogonal groups, and bounds in reduction theory, Geom. Funct. Anal. 26 (2016), no. 3, 874–908. MR 3540455, DOI 10.1007/s00039-016-0379-2
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- D. W. Masser, Search bounds for Diophantine equations, A panorama of number theory or the view from Baker’s garden (Zürich, 1999) Cambridge Univ. Press, Cambridge, 2002, pp. 247–259. MR 1975456, DOI 10.1017/CBO9780511542961.017
- Peter Sarnak, Notes on the generalized Ramanujan conjectures, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 659–685. MR 2192019
- Carl Ludwig Siegel, Zur Theorie der quadratischen Formen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 21–46 (German). MR 311578
- O. T. O’Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843–878. MR 98064, DOI 10.2307/2372837
- S. Straumann, Das Äquivalenzproblem ganzer quadratischer Formen: Einige explizite Resultate, Diplomarbeit. Universität Basel, 1999.
Additional Information
- Wai Kiu Chan
- Affiliation: Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459
- MR Author ID: 336822
- ORCID: 0000-0003-2293-0017
- Email: wkchan@wesleyan.edu
- Han Li
- Affiliation: Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459
- MR Author ID: 1080132
- Email: hli03@wesleyan.edu
- Received by editor(s): September 6, 2021
- Published electronically: April 21, 2022
- Additional Notes: The second author acknowledges support by the NSF grant DMS #1700109, and the Simons Foundation grant #853671.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4619-4640
- MSC (2020): Primary 11E12, 37A44; Secondary 11E20, 37A25
- DOI: https://doi.org/10.1090/tran/8670
- MathSciNet review: 4439487