Min-max widths of the real projective 3-space
HTML articles powered by AMS MathViewer
- by Márcio Batista and Anderson Lima PDF
- Trans. Amer. Math. Soc. 375 (2022), 5239-5258 Request permission
Abstract:
In this paper we deal with the min-max invariant known as $p$-width for the 3-dimensional real projective space. More precisely, we present an explicit and sharp $p$-sweepout, for $p=1$, $2$, $3$, and compute the value of the $p$-width for such values. Using Lusternik-Schnirelmann type argument we also verify the jump of the $5$-width and, using algebraic sets, we estimate the $9$-width.References
- Frederick J. Almgren Jr., The Theory of Varifolds, Mimeographed notes, Princeton (1965).
- Nicolau Sarquis Aiex, The width of ellipsoids, Comm. Anal. Geom. 27 (2019), no. 2, 251–285. MR 4003008, DOI 10.4310/CAG.2019.v27.n2.a1
- George D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), no. 2, 199–300. MR 1501070, DOI 10.1090/S0002-9947-1917-1501070-3
- Simon Brendle, Embedded minimal tori in $S^3$ and the Lawson conjecture, Acta Math. 211 (2013), no. 2, 177–190. MR 3143888, DOI 10.1007/s11511-013-0101-2
- Otis Chodosh and Christos Mantoulidis, The p-widths of a surface, Preprint, arXiv:2107.11684v1.
- Sidney Donato, The first $p$-widths of the unit disk, J. Geom. Anal. 32 (2022), no. 6, Paper No. 177, 38. MR 4404859, DOI 10.1007/s12220-022-00913-3
- M. Gromov, Dimension, nonlinear spectra and width, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 132–184. MR 950979, DOI 10.1007/BFb0081739
- M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), no. 1, 178–215. MR 1978494, DOI 10.1007/s000390300004
- Larry Guth, Minimax problems related to cup powers and Steenrod squares, Geom. Funct. Anal. 18 (2009), no. 6, 1917–1987. MR 2491695, DOI 10.1007/s00039-009-0710-2
- Gerhard Huisken and Alexander Polden, Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 45–84. MR 1731639, DOI 10.1007/BFb0092669
- David A. Hoffman and Robert Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, iii+105. MR 587748, DOI 10.1090/memo/0236
- Daniel Ketover, Fernando C. Marques, and André Neves, The catenoid estimate and its geometric applications, J. Differential Geom. 115 (2020), no. 1, 1–26. MR 4081930, DOI 10.4310/jdg/1586224840
- Yevgeny Liokumovich, Fernando C. Marques, and André Neves, Weyl law for the volume spectrum, Ann. of Math. (2) 187 (2018), no. 3, 933–961. MR 3779961, DOI 10.4007/annals.2018.187.3.7
- Fernando C. Marques and André Neves, Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J. 161 (2012), no. 14, 2725–2752. MR 2993139, DOI 10.1215/00127094-1813410
- Fernando C. Marques and André Neves, Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179 (2014), no. 2, 683–782. MR 3152944, DOI 10.4007/annals.2014.179.2.6
- Fernando C. Marques and André Neves, Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math. 4 (2016), no. 4, 463–511. MR 3572636, DOI 10.4310/CJM.2016.v4.n4.a2
- Fernando C. Marques and André Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math. 209 (2017), no. 2, 577–616. MR 3674223, DOI 10.1007/s00222-017-0716-6
- Nurser, C. Low min-max widths of the round three-sphere, Ph. D. Thesis, Department of Mathematics of Imperial College, October (2016). DOI 10.25560/42503
- Jon T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, vol. 27, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 626027, DOI 10.1515/9781400856459
- Henri Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), no. 3, 237–274 (French). MR 1500710, DOI 10.1090/S0002-9947-1905-1500710-4
- Antonio Ros, The Willmore conjecture in the real projective space, Math. Res. Lett. 6 (1999), no. 5-6, 487–493. MR 1739208, DOI 10.4310/MRL.1999.v6.n5.a2
- Luis A. Santaló, Cauchy and Kubota’s formula for convex bodies in elliptic $n$-space, Rend. Sem. Mat. Univ. Politec. Torino 38 (1980), no. 1, 51–58. MR 608929
- L. A. Santaló, Integral geometry in general spaces, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, Amer. Math. Soc., Providence, R.I., 1952, pp. 483–489. MR 0044146
- Luis A. Santaló, Integral geometry and geometric probability, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. With a foreword by Mark Kac. MR 2162874, DOI 10.1017/CBO9780511617331
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- Antoine Song, Existence of infinitely many minimal hypersurfaces in closed manifolds, Preprint, arXiv:1806.08816.
- Ben Sharp, Compactness of minimal hypersurfaces with bounded index, J. Differential Geom. 106 (2017), no. 2, 317–339. MR 3662994, DOI 10.4310/jdg/1497405628
- Xin Zhou, On the Variational Methods for Minimal Submanifolds, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Stanford University. MR 4187541
- Xin Zhou, Min-max minimal hypersurface in $(M^{n+1},g)$ with $Ric>0$ and $2 \leq n\leq 6$, J. Differential Geom. 100 (2015), no. 1, 129–160. MR 3326576
- Xin Zhou, Min-max hypersurface in manifold of positive Ricci curvature, J. Differential Geom. 105 (2017), no. 2, 291–343. MR 3606731
- Xin Zhou, On the multiplicity one conjecture in min-max theory, Ann. of Math. (2) 192 (2020), no. 3, 767–820. MR 4172621, DOI 10.4007/annals.2020.192.3.3
Additional Information
- Márcio Batista
- Affiliation: CPMAT - IM, Universidade Federal de Alagoas, Maceió, AL, 57072-970, Brazil
- MR Author ID: 916216
- ORCID: 0000-0002-6495-3842
- Email: mhbs@mat.ufal.br
- Anderson Lima
- Affiliation: CPMAT - IM, Universidade Federal de Alagoas, Maceió, AL, 57072-970, Brazil
- Email: jose.lima@im.ufal.br
- Received by editor(s): July 29, 2021
- Received by editor(s) in revised form: January 5, 2022, and January 25, 2022
- Published electronically: April 21, 2022
- Additional Notes: The first author is the corresponding author.
This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico Grant: 308440/2021-8 to M.B. (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5239-5258
- MSC (2020): Primary 53C42, 53C23; Secondary 58J50
- DOI: https://doi.org/10.1090/tran/8682
- MathSciNet review: 4439504