Slices of the parameter space of cubic polynomials
HTML articles powered by AMS MathViewer
- by Alexander Blokh, Lex Oversteegen and Vladlen Timorin PDF
- Trans. Amer. Math. Soc. 375 (2022), 5313-5359 Request permission
Abstract:
In this paper, we study slices of the parameter space of cubic polynomials, up to affine conjugacy, given by a fixed value of the multiplier at a non-repelling fixed point. In particular, we study the location of the main cubioid in this parameter space. The main cubioid is the set of affine conjugacy classes of complex cubic polynomials that have certain dynamical properties generalizing those of polynomials $z^2+c$ for $c$ in the filled main cardioid.References
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Alexander Blokh, Arnaud Chéritat, Lex Oversteegen, and Vladlen Timorin, Location of Siegel capture polynomials in parameter spaces, Nonlinearity 34 (2021), no. 4, 2430–2453. MR 4253561, DOI 10.1088/1361-6544/abb9f9
- Alexander Blokh, Doug Childers, Genadi Levin, Lex Oversteegen, and Dierk Schleicher, An extended Fatou-Shishikura inequality and wandering branch continua for polynomials, Adv. Math. 288 (2016), 1121–1174. MR 3436407, DOI 10.1016/j.aim.2015.10.020
- Alexander M. Blokh, Clinton P. Curry, and Lex G. Oversteegen, Locally connected models for Julia sets, Adv. Math. 226 (2011), no. 2, 1621–1661. MR 2737795, DOI 10.1016/j.aim.2010.08.011
- Alexander M. Blokh, Robbert J. Fokkink, John C. Mayer, Lex G. Oversteegen, and E. D. Tymchatyn, Fixed point theorems for plane continua with applications, Mem. Amer. Math. Soc. 224 (2013), no. 1053, xiv+97. MR 3087640, DOI 10.1090/S0065-9266-2012-00671-X
- Alexander Blokh, James M. Malaugh, John C. Mayer, Lex G. Oversteegen, and Daniel K. Parris, Rotational subsets of the circle under $z^d$, Topology Appl. 153 (2006), no. 10, 1540–1570. MR 2216120, DOI 10.1016/j.topol.2005.04.010
- Alexander M. Blokh, Debra Mimbs, Lex G. Oversteegen, and Kirsten I. S. Valkenburg, Laminations in the language of leaves, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5367–5391. MR 3074377, DOI 10.1090/S0002-9947-2013-05809-6
- Alexander Blokh and Lex Oversteegen, Monotone images of Cremer Julia sets, Houston J. Math. 36 (2010), no. 2, 469–476. MR 2661256
- Alexander Blokh, Lex Oversteegen, Ross Ptacek, and Vladlen Timorin, Laminations from the main cubioid, Discrete Contin. Dyn. Syst. 36 (2016), no. 9, 4665–4702. MR 3541500, DOI 10.3934/dcds.2016003
- Alexander Blokh, Lex Oversteegen, Ross Ptacek, and Vladlen Timorin, The main cubioid, Nonlinearity 27 (2014), no. 8, 1879–1897. MR 3246159, DOI 10.1088/0951-7715/27/8/1879
- Alexander Blokh, Lex Oversteegen, Ross Ptacek, and Vladlen Timorin, Quadratic-like dynamics of cubic polynomials, Comm. Math. Phys. 341 (2016), no. 3, 733–749. MR 3452269, DOI 10.1007/s00220-015-2559-6
- Alexander Blokh, Lex Oversteegen, Ross Ptacek, and Vladlen Timorin, Complementary components to the cubic principal hyperbolic domain, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4649–4660. MR 3856134, DOI 10.1090/proc/14168
- Alexander Blokh, Lex Oversteegen, and Vladlen Timorin, Non-degenerate locally connected models for plane continua and Julia sets, Discrete Contin. Dyn. Syst. 37 (2017), no. 11, 5781–5795. MR 3681960, DOI 10.3934/dcds.2017251
- Bodil Branner and John H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), no. 3-4, 143–206. MR 945011, DOI 10.1007/BF02392275
- Xavier Buff, Jean Écalle, and Adam Epstein, Limits of degenerate parabolic quadratic rational maps, Geom. Funct. Anal. 23 (2013), no. 1, 42–95. MR 3037897, DOI 10.1007/s00039-012-0203-6
- X. Buff and C. Henriksen, Julia sets in parameter spaces, Comm. Math. Phys. 220 (2001), no. 2, 333–375. MR 1844629, DOI 10.1007/PL00005568
- Shaun Bullett and Pierrette Sentenac, Ordered orbits of the shift, square roots, and the devil’s staircase, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 451–481 (English, with English and French summaries). MR 1269932, DOI 10.1017/S0305004100072236
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367
- Adam Epstein and Michael Yampolsky, Geography of the cubic connectedness locus: intertwining surgery, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 2, 151–185 (English, with English and French summaries). MR 1681808, DOI 10.1016/S0012-9593(99)80013-5
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 33–94 (French). MR 1504792
- John Darroch Faught, Local connectivity in a family of cubic polynomials, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–Cornell University. MR 2688243
- Lisa R. Goldberg and John Milnor, Fixed points of polynomial maps. II. Fixed point portraits, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 51–98. MR 1209913
- Jan Kiwi, Non-accessible critical points of Cremer polynomials, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1391–1403. MR 1786720, DOI 10.1017/S0143385700000754
- Jan Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1473–1485. MR 1873015, DOI 10.1090/S0002-9947-01-02896-3
- Jan Kiwi, $\Bbb R$eal laminations and the topological dynamics of complex polynomials, Adv. Math. 184 (2004), no. 2, 207–267. MR 2054016, DOI 10.1016/S0001-8708(03)00144-0
- M. Yu. Lyubich, Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk 38 (1983), no. 5(233), 197–198 (Russian). MR 718838
- Ricardo Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993), no. 1, 1–11. MR 1224298, DOI 10.1007/BF01231694
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482
- John Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account, Astérisque 261 (2000), xiii, 277–333 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755445
- J. Milnor, Holomorphic dynamics, 3rd ed., Matrix Press, 2006.
- James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [ MR0464128]. MR 3728284
- Pascale Roesch and Yongcheng Yin, The boundary of bounded polynomial Fatou components, C. R. Math. Acad. Sci. Paris 346 (2008), no. 15-16, 877–880 (English, with English and French summaries). MR 2441925, DOI 10.1016/j.crma.2008.06.004
- Pascale Roesch, Puzzles de Yoccoz pour les applications à allure rationnelle, Enseign. Math. (2) 45 (1999), no. 1-2, 133–168 (French). MR 1703365
- Pascale Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 6, 901–949 (English, with English and French summaries). MR 2419853, DOI 10.1016/j.ansens.2007.10.001
- James T. Rogers Jr., Singularities in the boundaries of local Siegel disks, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 803–821. MR 1200345, DOI 10.1017/S0143385700007112
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- William P. Thurston, On the geometry and dynamics of iterated rational maps, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 3–137. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. MR 2508255, DOI 10.1201/b10617-3
- Saeed Zakeri, Dynamics of cubic Siegel polynomials, Comm. Math. Phys. 206 (1999), no. 1, 185–233. MR 1736986, DOI 10.1007/s002200050702
- Saeed Zakeri, Rotation sets and complex dynamics, Lecture Notes in Mathematics, vol. 2214, Springer, Cham, 2018. MR 3793658, DOI 10.1007/978-3-319-78810-4
Additional Information
- Alexander Blokh
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
- MR Author ID: 196866
- ORCID: 0000-0003-0778-8876
- Email: ablokh@math.uab.edu
- Lex Oversteegen
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
- MR Author ID: 134850
- Email: overstee@uab.edu
- Vladlen Timorin
- Affiliation: Faculty of Mathematics, HSE University, Russian Federation, 6 Usacheva St., 119048 Moscow, Russia; and Independent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russia
- MR Author ID: 645829
- ORCID: 0000-0002-8089-7254
- Email: vtimorin@hse.ru
- Received by editor(s): February 24, 2020
- Received by editor(s) in revised form: April 13, 2021, and June 29, 2021
- Published electronically: June 3, 2022
- Additional Notes: The first author was partially supported by NSF grant DMS–1201450.
The second author was partially supported by NSF grant DMS-1807558.
The third author’s research was funded within the framework of the HSE University Basic Research Program. - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5313-5359
- MSC (2020): Primary 37F20; Secondary 37F10, 37F50
- DOI: https://doi.org/10.1090/tran/8519
- MathSciNet review: 4469222