Counting the zeros of an elephant random walk
HTML articles powered by AMS MathViewer
- by Jean Bertoin PDF
- Trans. Amer. Math. Soc. 375 (2022), 5539-5560 Request permission
Abstract:
We study how memory impacts passages at the origin for a so-called elephant random walk in the diffusive regime. We observe that the number of zeros always grows asymptotically like the square root of the time, despite the fact that, depending on the memory parameter, first return times to $0$ may have a finite expectation or a fat tail with exponent less than $1/2$. We resolve this apparent paradox by recasting the questions in the framework of scaling limits for Markov chains and self-similar Markov processes.References
- Omer Angel, Nicholas Crawford, and Gady Kozma, Localization for linearly edge reinforced random walks, Duke Math. J. 163 (2014), no. 5, 889–921. MR 3189433, DOI 10.1215/00127094-2644357
- E. Baur and J. Bertoin, Elephant random walks and their connection to Pólya-type urns, Phys. Rev. E 94 (Nov. 2016), 052134.
- Bernard Bercu, A martingale approach for the elephant random walk, J. Phys. A 51 (2018), no. 1, 015201, 16. MR 3741953, DOI 10.1088/1751-8121/aa95a6
- Bernard Bercu and Lucile Laulin, On the multi-dimensional elephant random walk, J. Stat. Phys. 175 (2019), no. 6, 1146–1163. MR 3962977, DOI 10.1007/s10955-019-02282-8
- Bernard Bercu and Lucile Laulin, On the center of mass of the elephant random walk, Stochastic Process. Appl. 133 (2021), 111–128. MR 4187306, DOI 10.1016/j.spa.2020.11.004
- Marco Bertenghi, Functional limit theorems for the multi-dimensional elephant random walk, Stoch. Models 38 (2022), no. 1, 37–50. MR 4359299, DOI 10.1080/15326349.2021.1971092
- Jean Bertoin and Maria-Emilia Caballero, Entrance from $0+$ for increasing semi-stable Markov processes, Bernoulli 8 (2002), no. 2, 195–205. MR 1895890
- Jean Bertoin and Igor Kortchemski, Self-similar scaling limits of Markov chains on the positive integers, Ann. Appl. Probab. 26 (2016), no. 4, 2556–2595. MR 3543905, DOI 10.1214/15-AAP1157
- Cristian F. Coletti, Renato Gava, and Gunter M. Schütz, Central limit theorem and related results for the elephant random walk, J. Math. Phys. 58 (2017), no. 5, 053303, 8. MR 3652225, DOI 10.1063/1.4983566
- Cristian F. Coletti, Renato Gava, and Gunter M. Schütz, A strong invariance principle for the elephant random walk, J. Stat. Mech. Theory Exp. 12 (2017), 123207, 8. MR 3748931, DOI 10.1088/1742-5468/aa9680
- Cristian F. Coletti and Ioannis Papageorgiou, Asymptotic analysis of the elephant random walk, J. Stat. Mech. Theory Exp. 1 (2021), Paper No. 013205, 12. MR 4248774, DOI 10.1088/1742-5468/abcd36
- Allan Gut and Ulrich Stadtmüller, Variations of the elephant random walk, J. Appl. Probab. 58 (2021), no. 3, 805–829. MR 4313031, DOI 10.1017/jpr.2021.3
- William Feller, Fluctuation theory of recurrent events, Trans. Amer. Math. Soc. 67 (1949), 98–119. MR 32114, DOI 10.1090/S0002-9947-1949-0032114-7
- Allan Gut and Ulrich Stadtmüller, The number of zeros in elephant random walks with delays, Statist. Probab. Lett. 174 (2021), Paper No. 109112, 9. MR 4246204, DOI 10.1016/j.spl.2021.109112
- Bénédicte Haas and Grégory Miermont, Self-similar scaling limits of non-increasing Markov chains, Bernoulli 17 (2011), no. 4, 1217–1247. MR 2854770, DOI 10.3150/10-BEJ312
- C. C. Heyde, Asymptotics and criticality for a correlated Bernoulli process, Aust. N. Z. J. Stat. 46 (2004), no. 1, 53–57. Festschrift in honour of Daryl Daley. MR 2060952, DOI 10.1111/j.1467-842X.2004.00311.x
- Svante Janson, Functional limit theorems for multitype branching processes and generalized Pólya urns, Stochastic Process. Appl. 110 (2004), no. 2, 177–245. MR 2040966, DOI 10.1016/j.spa.2003.12.002
- Olav Kallenberg, Foundations of modern probability, 2nd ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002. MR 1876169, DOI 10.1007/978-1-4757-4015-8
- Naoki Kubota and Masato Takei, Gaussian fluctuation for superdiffusive elephant random walks, J. Stat. Phys. 177 (2019), no. 6, 1157–1171. MR 4034803, DOI 10.1007/s10955-019-02414-0
- Andreas E. Kyprianou, Fluctuations of Lévy processes with applications, 2nd ed., Universitext, Springer, Heidelberg, 2014. Introductory lectures. MR 3155252, DOI 10.1007/978-3-642-37632-0
- John Lamperti, Semi-stable Markov processes. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 205–225. MR 307358, DOI 10.1007/BF00536091
- RafałLatała, Estimation of moments of sums of independent real random variables, Ann. Probab. 25 (1997), no. 3, 1502–1513. MR 1457628, DOI 10.1214/aop/1024404522
- Hosam M. Mahmoud, Pólya urn models, Texts in Statistical Science Series, CRC Press, Boca Raton, FL, [2009] ©2009. MR 2435823
- Franz Merkl and Silke W. W. Rolles, Recurrence of edge-reinforced random walk on a two-dimensional graph, Ann. Probab. 37 (2009), no. 5, 1679–1714. MR 2561431, DOI 10.1214/08-AOP446
- P. A. Meyer, Démonstration simplifiée d’un théorème de Knight, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971, pp. 191–195 (French). MR 0380972
- Ilya Molchanov, Theory of random sets, Probability Theory and Stochastic Modelling, vol. 87, Springer-Verlag, London, 2017. Second edition of [ MR2132405]. MR 3751326
- F. Papangelou, Integrability of expected increments of point processes and a related random change of scale, Trans. Amer. Math. Soc. 165 (1972), 483–506. MR 314102, DOI 10.1090/S0002-9947-1972-0314102-9
- Robin Pemantle, A survey of random processes with reinforcement, Probab. Surv. 4 (2007), 1–79. MR 2282181, DOI 10.1214/07-PS094
- Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357, DOI 10.1007/978-3-662-06400-9
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 1, 2nd ed., Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1994. Foundations. MR 1331599
- Christophe Sabot, Random walks in random Dirichlet environment are transient in dimension $d\geq 3$, Probab. Theory Related Fields 151 (2011), no. 1-2, 297–317. MR 2834720, DOI 10.1007/s00440-010-0300-0
- Christophe Sabot and Xiaolin Zeng, A random Schrödinger operator associated with the vertex reinforced jump process on infinite graphs, J. Amer. Math. Soc. 32 (2019), no. 2, 311–349. MR 3904155, DOI 10.1090/jams/906
- G. M. Schütz and S. Trimper, Elephants can always remember: exact long-range memory effects in a non-Markovian random walk, Phys. Rev. E 70 (Oct 2004), 045101.
- David Williams, Lévy’s downcrossing theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 (1977), no. 2, 157–158. MR 464413, DOI 10.1007/BF00532879
Additional Information
- Jean Bertoin
- Affiliation: Institute of Mathematics, University of Zurich, Switzerland
- MR Author ID: 237984
- ORCID: 0000-0002-0073-0439
- Received by editor(s): May 20, 2021
- Received by editor(s) in revised form: December 13, 2021, and December 14, 2021
- Published electronically: March 31, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5539-5560
- MSC (2020): Primary 60J10, 60J55, 82C41, 60G42
- DOI: https://doi.org/10.1090/tran/8622
- MathSciNet review: 4469228