On deformation spaces of toric singularities and on singularities of K-moduli of Fano varieties
HTML articles powered by AMS MathViewer
- by Andrea Petracci PDF
- Trans. Amer. Math. Soc. 375 (2022), 5617-5643 Request permission
Abstract:
Firstly, we see that the bases of the miniversal deformations of isolated $\mathbb {Q}$-Gorenstein toric singularities are quite restricted. In particular, we classify the analytic germs of embedding dimension $\leq 2$ which are the bases of the miniversal deformations of isolated $\mathbb {Q}$-Gorenstein toric singularities.
Secondly, we show that the deformation spaces of isolated Gorenstein toric $3$-fold singularities appear, in a weak sense, as singularities of the K-moduli stack of K-semistable Fano varieties of every dimension $\geq 3$. As a consequence, we prove that the number of local branches of the K-moduli stack of K-semistable Fano varieties and of the K-moduli space of K-polystable Fano varieties is unbounded in each dimension $\geq 3$.
References
- Jarod Alper, Harold Blum, Daniel Halpern-Leistner, and Chenyang Xu, Reductivity of the automorphism group of $K$-polystable Fano varieties, Invent. Math. 222 (2020), no. 3, 995–1032. MR 4169054, DOI 10.1007/s00222-020-00987-2
- Mohammad Akhtar, Tom Coates, Alessio Corti, Liana Heuberger, Alexander Kasprzyk, Alessandro Oneto, Andrea Petracci, Thomas Prince, and Ketil Tveiten, Mirror symmetry and the classification of orbifold del Pezzo surfaces, Proc. Amer. Math. Soc. 144 (2016), no. 2, 513–527. MR 3430830, DOI 10.1090/proc/12876
- Klaus Altmann, Alexandru Constantinescu, and Matej Filip, Polyhedra, lattice structures, and extensions of semigroups, arXiv:2004.07377 (2020).
- Klaus Altmann, Alexandru Constantinescu, and Matej Filip, Versality in toric geometry, arXiv:2005.01884 (2020).
- Dan Abramovich and Brendan Hassett, Stable varieties with a twist, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 1–38. MR 2779465, DOI 10.4171/007-1/1
- Jarod Alper, Jack Hall, and David Rydh, A Luna étale slice theorem for algebraic stacks, Ann. of Math. (2) 191 (2020), no. 3, 675–738. MR 4088350, DOI 10.4007/annals.2020.191.3.1
- Klaus Altmann and Lars Kastner, Negative deformations of toric singularities that are smooth in codimension two, Deformations of surface singularities, Bolyai Soc. Math. Stud., vol. 23, János Bolyai Math. Soc., Budapest, 2013, pp. 13–55. MR 3203574, DOI 10.1007/978-3-642-39131-6_{1}
- Klaus Altmann, Minkowski sums and homogeneous deformations of toric varieties, Tohoku Math. J. (2) 47 (1995), no. 2, 151–184. MR 1329519, DOI 10.2748/tmj/1178225590
- Klaus Altmann, The versal deformation of an isolated toric Gorenstein singularity, Invent. Math. 128 (1997), no. 3, 443–479. MR 1452429, DOI 10.1007/s002220050148
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Robert J. Berman, K-polystability of ${\Bbb Q}$-Fano varieties admitting Kähler-Einstein metrics, Invent. Math. 203 (2016), no. 3, 973–1025. MR 3461370, DOI 10.1007/s00222-015-0607-7
- Lukas Braun, Daniel Greb, Kevin Langlois, and Joaquín Moraga, Reductive quotients of klt singularities, arXiv:2111.02812 (2021).
- Harold Blum, Daniel Halpern-Leistner, Yuchen Liu, and Chenyang Xu, On properness of K-moduli spaces and optimal degenerations of Fano varieties, Selecta Math. (N.S.) 27 (2021), no. 4, Paper No. 73, 39. MR 4292783, DOI 10.1007/s00029-021-00694-7
- Harold Blum, Yuchen Liu, and Chenyang Xu, Openness of K-semistability for Fano varieties, to appear in Duke Math. J. (2019). arXiv:1907.02408.
- Kurt Behnke and Oswald Riemenschneider, Quotient surface singularities and their deformations, Singularity theory (Trieste, 1991) World Sci. Publ., River Edge, NJ, 1995, pp. 1–54. MR 1378394
- Harold Blum and Chenyang Xu, Uniqueness of K-polystable degenerations of Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 609–656. MR 3997130, DOI 10.4007/annals.2019.190.2.4
- Alessio Corti, Matej Filip, and Andrea Petracci, Mirror symmetry and smoothing Gorenstein toric affine 3-folds, In: Facets of Algebraic Geometry: A Collection in Honor of William Fulton’s 80th Birthday (2022), London Mathematical Society Lecture Note Series, pp. 132–163, Cambridge University Press. DOI 10.1017/9781108877831.005
- Wei Liang Chow, On unmixedness theorem, Amer. J. Math. 86 (1964), 799–822. MR 171804, DOI 10.2307/2373158
- Jan Arthur Christophersen, On the components and discriminant of the versal base space of cyclic quotient singularities, Singularity theory and its applications, Part I (Coventry, 1988/1989) Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, pp. 81–92. MR 1129026, DOI 10.1007/BFb0086376
- Matej Filip, On deformations of affine Gorenstein toric varieties, arXiv:2006.12960 (2020).
- Matej Filip, The Gerstenhaber product $\textrm {HH}^2(A)\times \textrm {HH}^2(A)\to \textrm {HH}^3(A)$ of affine toric varieties, Comm. Algebra 49 (2021), no. 3, 1146–1162. MR 4219866, DOI 10.1080/00927872.2020.1828906
- Simon Felten, Andrea Petracci, and Sharon Robins, Deformations of log Calabi-Yau pairs can be obstructed, to appear in Math. Res. Lett., arXiv::2109.00420
- Andreas Hochenegger and Nathan Owen Ilten, Families of invariant divisors on rational complexity-one $T$-varieties, J. Algebra 392 (2013), 52–68. MR 3085022, DOI 10.1016/j.jalgebra.2013.06.019
- Paul Hacking and Yuri Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010), no. 1, 169–192. MR 2581246, DOI 10.1112/S0010437X09004370
- Nathan Owen Ilten, Deformations of smooth toric surfaces, Manuscripta Math. 134 (2011), no. 1-2, 123–137. MR 2745256, DOI 10.1007/s00229-010-0386-9
- Nathan Ilten and Charles Turo, Deformations of smooth complete toric varieties: obstructions and the cup product, Algebra Number Theory 14 (2020), no. 4, 907–925. MR 4114060, DOI 10.2140/ant.2020.14.907
- Nathan Owen Ilten and Robert Vollmert, Deformations of rational $T$-varieties, J. Algebraic Geom. 21 (2012), no. 3, 531–562. MR 2914803, DOI 10.1090/S1056-3911-2011-00585-7
- Joachim Jelisiejew, Pathologies on the Hilbert scheme of points, Invent. Math. 220 (2020), no. 2, 581–610. MR 4081138, DOI 10.1007/s00222-019-00939-5
- Chen Jiang, Boundedness of $\Bbb Q$-Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1235–1248 (English, with English and French summaries). MR 4174851, DOI 10.24033/asens.2445
- Anne-Sophie Kaloghiros and Andrea Petracci, On toric geometry and K-stability of Fano varieties, Trans. Amer. Math. Soc. Ser. B 8 (2021), 548–577. MR 4287508, DOI 10.1090/btran/82
- J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338. MR 922803, DOI 10.1007/BF01389370
- Chi Li, Xiaowei Wang, and Chenyang Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021), no. 4, 1175–1214. MR 4301561, DOI 10.1090/jams/974
- Yuchen Liu, Chenyang Xu, and Ziquan Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, arXiv:2102.09405 (2021).
- Marco Manetti, Differential graded Lie algebras and formal deformation theory, Algebraic geometry—Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 785–810. MR 2483955, DOI 10.1090/pspum/080.2/2483955
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Anvar Mavlyutov, Deformations of toric varieties via Minkowski sum decompositions of polyhedral complexes, arXiv:0902.0967 (2009).
- Brian Osserman, Deformations and automorphisms: a framework for globalizing local tangent and obstruction spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 3, 581–633. MR 2722657
- Andrea Petracci, On deformations of toric Fano varieties, To appear in Interactions with lattice polytopes (2019). arXiv:1912.01538.
- Andrea Petracci, Homogeneous deformations of toric pairs, Manuscripta Math. 166 (2021), no. 1-2, 37–72. MR 4296370, DOI 10.1007/s00229-020-01219-w
- Andrea Petracci, K-moduli of Fano 3-folds can have embedded points, arXiv:2105.02307 (2021).
- Oswald Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211–248 (German). MR 367276, DOI 10.1007/BF01351850
- Taro Sano, On deformations of $\Bbb Q$-Fano 3-folds, J. Algebraic Geom. 25 (2016), no. 1, 141–176. MR 3419958, DOI 10.1090/jag/672
- Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222. MR 217093, DOI 10.1090/S0002-9947-1968-0217093-3
- Michael Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17–26. MR 292830, DOI 10.1007/BF01418741
- Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006. MR 2247603
- Jan Stevens, The versal deformation of cyclic quotient singularities, Deformations of surface singularities, Bolyai Soc. Math. Stud., vol. 23, János Bolyai Math. Soc., Budapest, 2013, pp. 163–201. MR 3203578, DOI 10.1007/978-3-642-39131-6_{5}
- Jan Stevens, On the versal deformation of cyclic quotient singularities, Singularity theory and its applications, Part I (Coventry, 1988/1989) Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, pp. 302–319. MR 1129040, DOI 10.1007/BFb0086390
- Burt Totaro, Jumping of the nef cone for Fano varieties, J. Algebraic Geom. 21 (2012), no. 2, 375–396. MR 2877439, DOI 10.1090/S1056-3911-2011-00557-2
- Mattia Talpo and Angelo Vistoli, Deformation theory from the point of view of fibered categories, Handbook of moduli. Vol. III, Adv. Lect. Math. (ALM), vol. 26, Int. Press, Somerville, MA, 2013, pp. 281–397. MR 3135440
- Ravi Vakil, Murphy’s law in algebraic geometry: badly-behaved deformation spaces, Invent. Math. 164 (2006), no. 3, 569–590. MR 2227692, DOI 10.1007/s00222-005-0481-9
- Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. MR 4088355, DOI 10.4007/annals.2020.191.3.6
- Chenyang Xu, K-stability of Fano varieties: an algebro-geometric approach, EMS Surv. Math. Sci. 8 (2021), no. 1-2, 265–354. MR 4307210, DOI 10.4171/emss/51
- Chenyang Xu and Ziquan Zhuang, On positivity of the CM line bundle on K-moduli spaces, Ann. of Math. (2) 192 (2020), no. 3, 1005–1068. MR 4172625, DOI 10.4007/annals.2020.192.3.7
Additional Information
- Andrea Petracci
- Affiliation: Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
- MR Author ID: 1138308
- ORCID: 0000-0003-4837-3431
- Email: a.petracci@unibo.it
- Received by editor(s): June 8, 2021
- Received by editor(s) in revised form: December 29, 2021
- Published electronically: June 3, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5617-5643
- MSC (2020): Primary 14J45, 14B07, 14M25, 14D15
- DOI: https://doi.org/10.1090/tran/8636
- MathSciNet review: 4469231