Static and dynamical, fractional uncertainty principles
HTML articles powered by AMS MathViewer
- by Sandeep Kumar, Felipe Ponce Vanegas and Luis Vega PDF
- Trans. Amer. Math. Soc. 375 (2022), 5691-5725 Request permission
Abstract:
We study the process of dispersion of low-regularity solutions to the Schrödinger equation using fractional weights (observables). We give another proof of the uncertainty principle for fractional weights and use it to get a lower bound for the concentration of mass. We also consider the evolution when the initial datum is the Dirac comb in $\mathbb {R}$. In this case we find fluctuations that concentrate at rational times and that resemble a realization of a Lévy process. Furthermore, the evolution exhibits multifractality.References
- Mikel Agirre, The Schrödinger equation and uncertainty principles, Ph.D. Thesis, University of the Basque Country UPV/EHU, 2020.
- Valeria Banica and Luis Vega, Riemann’s non-differentiable function and the binormal curvature flow, Preprint, arXiv:2007.07184, 2020.
- William Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1897–1905. MR 1254832, DOI 10.1090/S0002-9939-1995-1254832-9
- John J. Benedetto and Hans P. Heinig, Weighted Fourier inequalities: new proofs and generalizations, J. Fourier Anal. Appl. 9 (2003), no. 1, 1–37. MR 1953070, DOI 10.1007/s00041-003-0003-3
- Victor Beresnevich, Detta Dickinson, and Sanju Velani, Sets of exact ‘logarithmic’ order in the theory of Diophantine approximation, Math. Ann. 321 (2001), no. 2, 253–273. MR 1866488, DOI 10.1007/s002080100225
- M. V. Berry, Quantum fractals in boxes, J. Phys. A 29 (1996), no. 20, 6617–6629. MR 1421017, DOI 10.1088/0305-4470/29/20/016
- M. V. Berry and S. Klein, Integer, fractional and fractal Talbot effects, J. Modern Opt. 43 (1996), no. 10, 2139–2164. MR 1410175, DOI 10.1080/095003496154761
- Joan Bruna, Stéphane Mallat, Emmanuel Bacry, and Jean-François Muzy, Intermittent process analysis with scattering moments, Ann. Statist. 43 (2015), no. 1, 323–351. MR 3311862, DOI 10.1214/14-AOS1276
- Gong Chen and Peter J. Olver, Numerical simulation of nonlinear dispersive quantization, Discrete Contin. Dyn. Syst. 34 (2014), no. 3, 991–1008. MR 3094557, DOI 10.3934/dcds.2014.34.991
- Zhen-Qing Chen, Panki Kim, and Renming Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1307–1329. MR 2677618, DOI 10.4171/JEMS/231
- Vasilis Chousionis, M. Burak Erdoğan, and Nikolaos Tzirakis, Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. Lond. Math. Soc. (3) 110 (2015), no. 3, 543–564. MR 3342097, DOI 10.1112/plms/pdu061
- Michael G. Cowling and John F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984), no. 1, 151–165. MR 728691, DOI 10.1137/0515012
- Francisco de la Hoz and Luis Vega, Vortex filament equation for a regular polygon, Nonlinearity 27 (2014), no. 12, 3031–3057. MR 3291141, DOI 10.1088/0951-7715/27/12/3031
- M. B. Erdoğan and G. Shakan, Fractal solutions of dispersive partial differential equations on the torus, Selecta Math. (N.S.) 25 (2019), no. 1, Paper No. 11, 26. MR 3910065, DOI 10.1007/s00029-019-0455-1
- M. B. Erdoğan and N. Tzirakis, Talbot effect for the cubic non-linear Schrödinger equation on the torus, Math. Res. Lett. 20 (2013), no. 6, 1081–1090. MR 3228622, DOI 10.4310/MRL.2013.v20.n6.a7
- M. Burak Erdoğan and Nikolaos Tzirakis, Dispersive partial differential equations, London Mathematical Society Student Texts, vol. 86, Cambridge University Press, Cambridge, 2016. Wellposedness and applications. MR 3559154, DOI 10.1017/CBO9781316563267
- L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Uniqueness properties of solutions to Schrödinger equations, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 3, 415–442. MR 2917065, DOI 10.1090/S0273-0979-2011-01368-4
- Gerald B. Folland and Alladi Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238. MR 1448337, DOI 10.1007/BF02649110
- Rupert L. Frank, Eigenvalue bounds for the fractional Laplacian: a review, Recent developments in nonlocal theory, De Gruyter, Berlin, 2018, pp. 210–235. MR 3824213, DOI 10.1515/9783110571561-007
- Rupert L. Frank and Enno Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\Bbb {R}$, Acta Math. 210 (2013), no. 2, 261–318. MR 3070568, DOI 10.1007/s11511-013-0095-9
- Uriel Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov. MR 1428905
- R. Güting, On Mahler’s function $\theta _{1}$, Michigan Math. J. 10 (1963), 161–179. MR 151432
- J. H. Hannay and M. V. Berry, Quantization of linear maps on a torus-Fresnel diffraction by a periodic grating, Phys. D 1 (1980), no. 3, 267–290. MR 602111, DOI 10.1016/0167-2789(80)90026-3
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
- Hidenori Hasimoto, A soliton on a vortex filament, J. Fluid Mech. 51 (1972), no. 3, 477–485. MR 3363420, DOI 10.1017/S0022112072002307
- I. I. Hirschman Jr., A note on entropy, Amer. J. Math. 79 (1957), 152–156. MR 89127, DOI 10.2307/2372390
- Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
- Stéphane Jaffard, The multifractal nature of Lévy processes, Probab. Theory Related Fields 114 (1999), no. 2, 207–227. MR 1701520, DOI 10.1007/s004400050224
- Philippe Jaming, Nazarov’s uncertainty principles in higher dimension, J. Approx. Theory 149 (2007), no. 1, 30–41. MR 2371612, DOI 10.1016/j.jat.2007.04.005
- Vojtěch Jarník, Über die simultanen diophantischen Approximationen, Math. Z. 33 (1931), no. 1, 505–543 (German). MR 1545226, DOI 10.1007/BF01174368
- Kamil Kaleta and Tadeusz Kulczycki, Intrinsic ultracontractivity for Schrödinger operators based on fractional Laplacians, Potential Anal. 33 (2010), no. 4, 313–339. MR 2726901, DOI 10.1007/s11118-010-9170-4
- J. Nahas and G. Ponce, On the persistent properties of solutions to semi-linear Schrödinger equation, Comm. Partial Differential Equations 34 (2009), no. 10-12, 1208–1227. MR 2581970, DOI 10.1080/03605300903129044
- K. I. Oskolkov, The Schrödinger density and the Talbot effect, Approximation and probability, Banach Center Publ., vol. 72, Polish Acad. Sci. Inst. Math., Warsaw, 2006, pp. 189–219. MR 2325746, DOI 10.4064/bc72-0-13
- K. I. Oskolkov and M. A. Chakhkiev, On the “nondifferentiable” Riemann function and the Schrödinger equation, Tr. Mat. Inst. Steklova 269 (2010), no. Teoriya Funktsiĭ i Differentsial′nye Uravneniya, 193–203 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 269 (2010), no. 1, 186–196. MR 2729984, DOI 10.1134/S0081543810020161
- Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
- Igor Rodnianski, Fractal solutions of the Schrödinger equation, Nonlinear PDE’s, dynamics and continuum physics (South Hadley, MA, 1998) Contemp. Math., vol. 255, Amer. Math. Soc., Providence, RI, 2000, pp. 181–187. MR 1752508, DOI 10.1090/conm/255/03981
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Stefan Steinerberger, Fourier uncertainty principles, scale space theory and the smoothest average, Preprint, arXiv:2005.01665, 2020.
- Henry F. Talbot, Facts relating to optical science. No. IV, Philos. Mag. 9 (1836), no. 56, 401–407.
Additional Information
- Sandeep Kumar
- Affiliation: BCAM - Basque Center for Applied Mathematics, Bilbao, Basque Country 48009, Spain
- Address at time of publication: Indominus Advanced Solutions S.L., Vigo 36414, Spain
- ORCID: 0000-0002-2677-3154
- Email: skumar@bcamath.org
- Felipe Ponce Vanegas
- Affiliation: BCAM - Basque Center for Applied Mathematics, Bilbao, Basque Country 48009, Spain
- MR Author ID: 1062677
- ORCID: 0000-0002-1049-9752
- Email: fponce@bcamath.org
- Luis Vega
- Affiliation: BCAM - Basque Center for Applied Mathematics, Bilbao, Basque Country 48009, Spain; and University of the Basque Country - UPV/EHU, Bilbao, Basque Country 48940, Spain
- MR Author ID: 237776
- ORCID: 0000-0001-5086-6345
- Email: lvega@bcamath.org
- Received by editor(s): March 17, 2021
- Received by editor(s) in revised form: September 3, 2021, and January 11, 2022
- Published electronically: May 23, 2022
- Additional Notes: This research was supported by the Basque Government through the BERC 2018-2021 program, by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718, and by the ERCEA Advanced Grant 2014 669689-HADE
The second author was supported by the project PGC2018-094528-B-I00. - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5691-5725
- MSC (2020): Primary 35J10; Secondary 35B99
- DOI: https://doi.org/10.1090/tran/8655
- MathSciNet review: 4469234