On quantitative Runge approximation for the time harmonic Maxwell equations
HTML articles powered by AMS MathViewer
- by Valter Pohjola PDF
- Trans. Amer. Math. Soc. 375 (2022), 5727-5751 Request permission
Abstract:
Here we derive some results on so called quantitative Runge approximation in the case of the time-harmonic Maxwell equations. This provides a Runge approximation having more explicit quantitative information. We additionally derive some results on the conditional stability of the Cauchy problem for the time-harmonic Maxwell equations.References
- Giovanni S. Alberti and Yves Capdeboscq, Elliptic regularity theory applied to time harmonic anisotropic Maxwell’s equations with less than Lipschitz complex coefficients, SIAM J. Math. Anal. 46 (2014), no. 1, 998–1016. MR 3166963, DOI 10.1137/130929539
- Giovanni Alessandrini, Luca Rondi, Edi Rosset, and Sergio Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems 25 (2009), no. 12, 123004, 47. MR 2565570, DOI 10.1088/0266-5611/25/12/123004
- J. Bergh, J. Löfström, Interpolation spaces: An introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976.
- Felix E. Browder, Approximation by solutions of partial differential equations, Amer. J. Math. 84 (1962), 134–160. MR 178247, DOI 10.2307/2372809
- Annalisa Buffa, Trace theorems on non-smooth boundaries for functional spaces related to Maxwell equations: an overview, Computational electromagnetics (Kiel, 2001) Lect. Notes Comput. Sci. Eng., vol. 28, Springer, Berlin, 2003, pp. 23–34. MR 1986130, DOI 10.1007/978-3-642-55745-3_{3}
- A. Buffa, M. Costabel, and D. Sheen, On traces for $\textbf {H}(\textbf {curl},\Omega )$ in Lipschitz domains, J. Math. Anal. Appl. 276 (2002), no. 2, 845–867. MR 1944792, DOI 10.1016/S0022-247X(02)00455-9
- A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci. 24 (2001), no. 1, 9–30. MR 1809491, DOI 10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2
- Michel Cessenat, Mathematical methods in electromagnetism, Series on Advances in Mathematics for Applied Sciences, vol. 41, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. Linear theory and applications. MR 1409140, DOI 10.1142/2938
- Mourad Choulli, Applications of elliptic Carleman inequalities to Cauchy and inverse problems, SpringerBriefs in Mathematics, Springer, [Cham]; BCAM Basque Center for Applied Mathematics, Bilbao, 2016. BCAM SpringerBriefs. MR 3495389, DOI 10.1007/978-3-319-33642-8
- David Dos Santos Ferreira, Carlos E. Kenig, Johannes Sjöstrand, and Gunther Uhlmann, On the linearized local Calderón problem, Math. Res. Lett. 16 (2009), no. 6, 955–970. MR 2576684, DOI 10.4310/MRL.2009.v16.n6.a4
- Matthias M. Eller and Masahiro Yamamoto, A Carleman inequality for the stationary anisotropic Maxwell system, J. Math. Pures Appl. (9) 86 (2006), no. 6, 449–462 (English, with English and French summaries). MR 2281446, DOI 10.1016/j.matpur.2006.10.004
- Jacques Hadamard, Lectures on Cauchy’s problem in linear partial differential equations, Dover Publications, New York, 1953. MR 0051411
- Bastian Gebauer, Localized potentials in electrical impedance tomography, Inverse Probl. Imaging 2 (2008), no. 2, 251–269. MR 2395143, DOI 10.3934/ipi.2008.2.251
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Bastian Harrach, Yi-Hsuan Lin, and Hongyu Liu, On localizing and concentrating electromagnetic fields, SIAM J. Appl. Math. 78 (2018), no. 5, 2558–2574. MR 3857899, DOI 10.1137/18M1173605
- Bastian Harrach, Valter Pohjola, and Mikko Salo, Monotonicity and local uniqueness for the Helmholtz equation, Anal. PDE 12 (2019), no. 7, 1741–1771. MR 3986540, DOI 10.2140/apde.2019.12.1741
- John David Jackson, Classical electrodynamics, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1975. MR 0436782
- David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219. MR 1331981, DOI 10.1006/jfan.1995.1067
- Manas Kar and Mourad Sini, An $H^{s,p}(\textrm {curl};\varOmega )$ estimate for the Maxwell system, Math. Ann. 364 (2016), no. 1-2, 559–587. MR 3451398, DOI 10.1007/s00208-015-1225-9
- Manas Kar and Mourad Sini, Reconstruction of interfaces using CGO solutions for the Maxwell equations, J. Inverse Ill-Posed Probl. 22 (2014), no. 2, 169–208. MR 3187937, DOI 10.1515/jip-2012-0054
- Andreas Kirsch and Frank Hettlich, The mathematical theory of time-harmonic Maxwell’s equations, Applied Mathematical Sciences, vol. 190, Springer, Cham, 2015. Expansion-, integral-, and variational methods. MR 3288313, DOI 10.1007/978-3-319-11086-8
- Matti Lassas, Tony Liimatainen, and Mikko Salo, The Poisson embedding approach to the Calderón problem, Math. Ann. 377 (2020), no. 1-2, 19–67. MR 4099622, DOI 10.1007/s00208-019-01818-3
- P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Comm. Pure Appl. Math. 9 (1956), 747–766. MR 86991, DOI 10.1002/cpa.3160090407
- Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990
- William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- Marius Mitrea, Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds, Duke Math. J. 125 (2004), no. 3, 467–547. MR 2166752, DOI 10.1215/S0012-7094-04-12322-1
- Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447, DOI 10.1093/acprof:oso/9780198508885.001.0001
- Tu Nguyen and Jenn-Nan Wang, Quantitative uniqueness estimate for the Maxwell system with Lipschitz anisotropic media, Proc. Amer. Math. Soc. 140 (2012), no. 2, 595–605. MR 2846328, DOI 10.1090/S0002-9939-2011-11137-7
- L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, Asymptotic Anal. 10 (1995), no. 2, 95–115 (French, with French summary). MR 1324385
- Angkana Rüland and Mikko Salo, Quantitative Runge approximation and inverse problems, Int. Math. Res. Not. IMRN 20 (2019), 6216–6234. MR 4031236, DOI 10.1093/imrn/rnx301
- Angkana Rüland and Mikko Salo, The fractional Calderón problem: low regularity and stability, Nonlinear Anal. 193 (2020), 111529, 56. MR 4062981, DOI 10.1016/j.na.2019.05.010
- Ben Schweizer, On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma, Trends in applications of mathematics to mechanics, Springer INdAM Ser., vol. 27, Springer, Cham, 2018, pp. 65–79. MR 3790952
- C. Weber, Regularity theorems for Maxwell’s equations, Math. Methods Appl. Sci. 3 (1981), no. 4, 523–536. MR 657071, DOI 10.1002/mma.1670030137
Additional Information
- Valter Pohjola
- Affiliation: BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
- MR Author ID: 1092393
- ORCID: 0000-0002-6441-7628
- Email: valter.pohjola@gmail.com
- Received by editor(s): June 1, 2021
- Received by editor(s) in revised form: January 24, 2022
- Published electronically: June 10, 2022
- Additional Notes: The author was supported by the grant PGC2018-094528-B-I00.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5727-5751
- DOI: https://doi.org/10.1090/tran/8662
- MathSciNet review: 4469235