On a version of the slicing problem for the surface area of convex bodies
HTML articles powered by AMS MathViewer
- by Silouanos Brazitikos and Dimitris-Marios Liakopoulos PDF
- Trans. Amer. Math. Soc. 375 (2022), 5561-5586 Request permission
Abstract:
We study the slicing inequality for the surface area instead of volume. This is the question whether there exists a constant $\alpha _n$ depending (or not) on the dimension $n$ so that \begin{equation*} S(K)\leqslant \alpha _n|K|^{\frac {1}{n}}\max _{\xi \in S^{n-1}}S(K\cap \xi ^{\perp }), \end{equation*} where $S$ denotes surface area and $|\cdot |$ denotes volume. For any fixed dimension we provide a negative answer to this question, as well as to a weaker version in which sections are replaced by projections onto hyperplanes. We also study the same problem for sections and projections of lower dimension and for all the quermassintegrals of a convex body. Starting from these questions, we also introduce a number of natural parameters relating volume and surface area, and provide optimal upper and lower bounds for them. Finally, we show that, in contrast to the previous negative results, a variant of the problem which arises naturally from the surface area version of the equivalence of the isomorphic Busemann–Petty problem with the slicing problem has an affirmative answer.References
- Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman, Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, vol. 202, American Mathematical Society, Providence, RI, 2015. MR 3331351, DOI 10.1090/surv/202
- Franck Barthe, An extremal property of the mean width of the simplex, Math. Ann. 310 (1998), no. 4, 685–693. MR 1619740, DOI 10.1007/s002080050166
- J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., vol. 1469, Springer, Berlin, 1991, pp. 127–137. MR 1122617, DOI 10.1007/BFb0089219
- Silouanos Brazitikos, Apostolos Giannopoulos, Petros Valettas, and Beatrice-Helen Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs, vol. 196, American Mathematical Society, Providence, RI, 2014. MR 3185453, DOI 10.1090/surv/196
- Silouanos Brazitikos, Susanna Dann, Apostolos Giannopoulos, and Alexander Koldobsky, On the average volume of sections of convex bodies, Israel J. Math. 222 (2017), no. 2, 921–947. MR 3722270, DOI 10.1007/s11856-017-1561-4
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88–94. MR 84791, DOI 10.7146/math.scand.a-10457
- H. Busemann and E. G. Straus, Area and normality, Pacific J. Math. 10 (1960), 35–72. MR 121767
- Giorgos Chasapis, Apostolos Giannopoulos, and Dimitris-Marios Liakopoulos, Estimates for measures of lower dimensional sections of convex bodies, Adv. Math. 306 (2017), 880–904. MR 3581320, DOI 10.1016/j.aim.2016.10.035
- Yuansi Chen, An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom. Funct. Anal. 31 (2021), no. 1, 34–61. MR 4244847, DOI 10.1007/s00039-021-00558-4
- Nikos Dafnis and Grigoris Paouris, Small ball probability estimates, $\psi _2$-behavior and the hyperplane conjecture, J. Funct. Anal. 258 (2010), no. 6, 1933–1964. MR 2578460, DOI 10.1016/j.jfa.2009.06.038
- Nikos Dafnis and Grigoris Paouris, Estimates for the affine and dual affine quermassintegrals of convex bodies, Illinois J. Math. 56 (2012), no. 4, 1005–1021. MR 3231472
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- Apostolos Giannopoulos and Emanuel Milman, $M$-estimates for isotropic convex bodies and their $L_q$-centroid bodies, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2116, Springer, Cham, 2014, pp. 159–182. MR 3364687, DOI 10.1007/978-3-319-09477-9_{1}3
- A. Giannopoulos, M. Hartzoulaki, and G. Paouris, On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2403–2412. MR 1897466, DOI 10.1090/S0002-9939-02-06329-3
- Apostolos Giannopoulos, Alexander Koldobsky, and Petros Valettas, Inequalities for the surface area of projections of convex bodies, Canad. J. Math. 70 (2018), no. 4, 804–823. MR 3813513, DOI 10.4153/CJM-2016-051-x
- Eric L. Grinberg, Isoperimetric inequalities and identities for $k$-dimensional cross-sections of convex bodies, Math. Ann. 291 (1991), no. 1, 75–86. MR 1125008, DOI 10.1007/BF01445191
- R. Howard, F. Nazarov, D. Ryabogin and A. Zvavitch, Determining starlike bodies by the perimeters of their central sections, preprint.
- Zakhar Kabluchko and Dmitry Zaporozhets, Intrinsic volumes of Sobolev balls with applications to Brownian convex hulls, Trans. Amer. Math. Soc. 368 (2016), no. 12, 8873–8899. MR 3551592, DOI 10.1090/tran/6628
- B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (2006), no. 6, 1274–1290. MR 2276540, DOI 10.1007/s00039-006-0588-1
- B. Klartag and V. Milman, Rapid Steiner symmetrization of most of a convex body and the slicing problem, Combin. Probab. Comput. 14 (2005), no. 5-6, 829–843. MR 2174659, DOI 10.1017/S0963548305006899
- Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704, DOI 10.1090/surv/116
- A. Koldobsky, Stability and separation in volume comparison problems, Math. Model. Nat. Phenom. 8 (2013), no. 1, 156–169. MR 3022986, DOI 10.1051/mmnp/20138111
- Alexander Koldobsky, Stability inequalities for projections of convex bodies, Discrete Comput. Geom. 57 (2017), no. 1, 152–163. MR 3589060, DOI 10.1007/s00454-016-9844-9
- Alexander Koldobsky, A $\sqrt {n}$ estimate for measures of hyperplane sections of convex bodies, Adv. Math. 254 (2014), 33–40. MR 3161089, DOI 10.1016/j.aim.2013.12.029
- Alexander Koldobsky, Estimates for measures of sections of convex bodies, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2116, Springer, Cham, 2014, pp. 261–271. MR 3364691, DOI 10.1007/978-3-319-09477-9_{1}7
- Alexander Koldobsky, Slicing inequalities for measures of convex bodies, Adv. Math. 283 (2015), 473–488. MR 3383809, DOI 10.1016/j.aim.2015.07.019
- A. Koldobsky, Private communication.
- Hermann König and Alexander Koldobsky, On the maximal perimeter of sections of the cube, Adv. Math. 346 (2019), 773–804. MR 3914180, DOI 10.1016/j.aim.2019.02.017
- Erwin Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531–538. MR 380631
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- S. Myroshnychenko, K. Tatarko and V. Yaskin, Unique determination of ellipsoids by their dual volumes, Int. Math. Res. Not. IMRN (to appear).
- Robert Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1, 1–29. MR 519520, DOI 10.2307/2320297
- C. Radhakrishna Rao, Linear statistical inference and its applications, 2nd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-London-Sydney, 1973. MR 0346957
- Igor Rivin, Surface area and other measures of ellipsoids, Adv. in Appl. Math. 39 (2007), no. 4, 409–427. MR 2356429, DOI 10.1016/j.aam.2006.08.009
- Anamaria Rusu, Determining starlike bodies by their curvature integrals, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–University of South Carolina. MR 2711955
- Dmitry Ryabogin, Vlad Yaskin, and Artem Zvavitch, Harmonic analysis and uniqueness questions in convex geometry, Recent advances in harmonic analysis and applications, Springer Proc. Math. Stat., vol. 25, Springer, New York, 2013, pp. 327–337. MR 3066896, DOI 10.1007/978-1-4614-4565-4_{2}6
- Michael Schmuckenschläger, An extremal property of the regular simplex, Convex geometric analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 199–202. MR 1665592
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- V. Yaskin, On perimeters of sections of convex polytopes, J. Math. Anal. Appl. 371 (2010), no. 2, 447–453. MR 2670125, DOI 10.1016/j.jmaa.2010.05.050
Additional Information
- Silouanos Brazitikos
- Affiliation: Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis 157-84, Athens, Greece
- MR Author ID: 1059952
- Email: silouanb@math.uoa.gr
- Dimitris-Marios Liakopoulos
- Affiliation: Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis 157-84, Athens, Greece
- MR Author ID: 1189494
- Email: dliakop@math.uoa.gr
- Received by editor(s): July 5, 2021
- Received by editor(s) in revised form: December 25, 2021
- Published electronically: April 26, 2022
- Additional Notes: We acknowledge support by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 1849).
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5561-5586
- MSC (2020): Primary 52A20; Secondary 46B06, 52A40, 52A38, 52A23
- DOI: https://doi.org/10.1090/tran/8666
- MathSciNet review: 4469229