Global Weierstrass equations of hyperelliptic curves
HTML articles powered by AMS MathViewer
- by Qing Liu PDF
- Trans. Amer. Math. Soc. 375 (2022), 5889-5906 Request permission
Abstract:
Given a hyperelliptic curve $C$ of genus $g$ over a number field $K$ and a Weierstrass model $\mathscr {C}$ of $C$ over the ring of integers $\mathcal {O}_K$ (i.e. the hyperelliptic involution of $C$ extends to $\mathscr {C}$ and the quotient is a smooth model of $\mathbb {P}^1_K$ over $\mathcal {O}_K$), we give necessary and sometimes sufficient conditions for $\mathscr {C}$ to be defined by a global Weierstrass equation. In particular, if $C$ has everywhere good reduction, we prove that it is defined by a global integral Weierstrass equation with invertible discriminant if the class number $h_K$ is prime to $2(2g+1)$, confirming a conjecture of M. Sadek.References
- N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321–324. MR 85301
- Ebru Bekyel, The density of elliptic curves having a global minimal Weierstrass equation, J. Number Theory 109 (2004), no. 1, 41–58. MR 2098475, DOI 10.1016/j.jnt.2004.06.003
- J. E. Cremona and M. Sadek, Local and global densities for Weierstrass models of elliptic curves, arXiv:2003.08454 [math.NT], 2021.
- Ofer Gabber, Qing Liu, and Dino Lorenzini, Hypersurfaces in projective schemes and a moving lemma, Duke Math. J. 164 (2015), no. 7, 1187–1270. MR 3347315, DOI 10.1215/00127094-2877293
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR 217085
- Qing Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4577–4610 (French, with English summary). MR 1363944, DOI 10.1090/S0002-9947-96-01684-4
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc. 342 (1994), no. 2, 729–752. MR 1195511, DOI 10.1090/S0002-9947-1994-1195511-X
- Knud Lønsted and Steven L. Kleiman, Basics on families of hyperelliptic curves, Compositio Math. 38 (1979), no. 1, 83–111. MR 523266
- M. Sadek, Private communication, 2020.
- Joseph H. Silverman, Weierstrass equations and the minimal discriminant of an elliptic curve, Mathematika 31 (1984), no. 2, 245–251 (1985). MR 804199, DOI 10.1112/S0025579300012468
- R. J. Stroeker, Reduction of elliptic curves over imaginary quadratic number fields, Pacific J. Math. 108 (1983), no. 2, 451–463. MR 713747
- Stacks Project Authors, Stacks project, stacks.math.columbia.edu, 2021.
Additional Information
- Qing Liu
- Affiliation: Université de Bordeaux, Institut de Mathématiques de Bordeaux, CNRS UMR 5251, 33405 Talence, France
- MR Author ID: 240790
- ORCID: 0000-0001-6884-139X
- Email: Qing.Liu@math.u-bordeaux.fr
- Received by editor(s): July 9, 2021
- Received by editor(s) in revised form: February 3, 2022, February 6, 2022, and February 16, 2022
- Published electronically: June 3, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5889-5906
- MSC (2020): Primary 11G30, 11G05, 14D10, 14H25
- DOI: https://doi.org/10.1090/tran/8672
- MathSciNet review: 4469240