Log-Brunn-Minkowski inequality under symmetry
HTML articles powered by AMS MathViewer
- by Károly J. Böröczky and Pavlos Kalantzopoulos PDF
- Trans. Amer. Math. Soc. 375 (2022), 5987-6013 Request permission
Abstract:
We prove the log-Brunn-Minkowski conjecture for convex bodies with symmetries to $n$ independent hyperplanes, and discuss the equality case and the uniqueness of the solution of the related case of the logarithmic Minkowski problem. We also clarify a small gap in the known argument classifying the equality case of the log-Brunn-Minkowski conjecture for unconditional convex bodies.References
- K. M. Ball, Isoperimetric problems in $\ell _p$ and sections of convex sets. PhD thesis, University of Cambridge, 1986.
- F. Barthe and D. Cordero-Erausquin, Invariances in variance estimates, Proc. Lond. Math. Soc. (3) 106 (2013), no. 1, 33–64. MR 3020738, DOI 10.1112/plms/pds011
- F. Barthe and M. Fradelizi, The volume product of convex bodies with many hyperplane symmetries, Amer. J. Math. 135 (2013), no. 2, 311–347. MR 3038713, DOI 10.1353/ajm.2013.0018
- Franck Barthe, Olivier Guédon, Shahar Mendelson, and Assaf Naor, A probabilistic approach to the geometry of the $l^n_p$-ball, Ann. Probab. 33 (2005), no. 2, 480–513. MR 2123199, DOI 10.1214/009117904000000874
- Gabriele Bianchi, Károly J. Böröczky, Andrea Colesanti, and Deane Yang, The $L_p$-Minkowski problem for $-n<p<1$, Adv. Math. 341 (2019), 493–535. MR 3872853, DOI 10.1016/j.aim.2018.10.032
- B. Bollobás and I. Leader, Products of unconditional bodies, Geometric aspects of functional analysis (Israel, 1992–1994) Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 13–24. MR 1353446
- T. Bonnesen and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. MR 920366
- Christer Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207–216. MR 399402, DOI 10.1007/BF01425510
- C. Borell, Convex set functions in $d$-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136. MR 404559, DOI 10.1007/BF02018814
- K. J. Böröczky and P. Hegedűs, The cone volume measure of antipodal points, Acta Math. Hungar. 146 (2015), no. 2, 449–465. MR 3369507, DOI 10.1007/s10474-015-0511-z
- Károly J. Böröczky and Martin Henk, Cone-volume measure of general centered convex bodies, Adv. Math. 286 (2016), 703–721. MR 3415694, DOI 10.1016/j.aim.2015.09.021
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), no. 3-4, 1974–1997. MR 2964630, DOI 10.1016/j.aim.2012.07.015
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013), no. 3, 831–852. MR 3037788, DOI 10.1090/S0894-0347-2012-00741-3
- Herm Jan Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389. MR 0450480, DOI 10.1016/0022-1236(76)90004-5
- Luis A. Caffarelli, Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131 (1990), no. 1, 135–150. MR 1038360, DOI 10.2307/1971510
- S. Chen, Y. Huang, and Q.-R. Li, The $L_p$-Brunn-Minkowski inequality for $p<1$, arXiv:1811.10181 (2018).
- Shibing Chen, Qi-rui Li, and Guangxian Zhu, The logarithmic Minkowski problem for non-symmetric measures, Trans. Amer. Math. Soc. 371 (2019), no. 4, 2623–2641. MR 3896091, DOI 10.1090/tran/7499
- Shibing Chen, Qi-rui Li, and Guangxian Zhu, On the $L_p$ Monge-Ampère equation, J. Differential Equations 263 (2017), no. 8, 4997–5011. MR 3680945, DOI 10.1016/j.jde.2017.06.007
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495–516. MR 423267, DOI 10.1002/cpa.3160290504
- Kai-Seng Chou and Xu-Jia Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006), no. 1, 33–83. MR 2254308, DOI 10.1016/j.aim.2005.07.004
- Andrea Colesanti, From the Brunn-Minkowski inequality to a class of Poincaré-type inequalities, Commun. Contemp. Math. 10 (2008), no. 5, 765–772. MR 2446898, DOI 10.1142/S0219199708002971
- Andrea Colesanti, Galyna V. Livshyts, and Arnaud Marsiglietti, On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal. 273 (2017), no. 3, 1120–1139. MR 3653949, DOI 10.1016/j.jfa.2017.04.008
- Andrea Colesanti, Daniel Hug, and Eugenia Saorín Gómez, A characterization of some mixed volumes via the Brunn-Minkowski inequality, J. Geom. Anal. 24 (2014), no. 2, 1064–1091. MR 3192306, DOI 10.1007/s12220-012-9364-7
- D. Cordero-Erausquin, M. Fradelizi, and B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal. 214 (2004), no. 2, 410–427. MR 2083308, DOI 10.1016/j.jfa.2003.12.001
- Michael W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. MR 2360474
- Serge Dubuc, Critères de convexité et inégalités intégrales, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 1, x, 135–165 (French, with English summary). MR 444863
- Ronen Eldan and Bo‘az Klartag, Dimensionality and the stability of the Brunn-Minkowski inequality, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 4, 975–1007. MR 3362116
- Alexandros Eskenazis and Georgios Moschidis, The dimensional Brunn-Minkowski inequality in Gauss space, J. Funct. Anal. 280 (2021), no. 6, Paper No. 108914, 19. MR 4193767, DOI 10.1016/j.jfa.2020.108914
- A. Figalli, F. Maggi, and A. Pratelli, A refined Brunn-Minkowski inequality for convex sets, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 6, 2511–2519. MR 2569906, DOI 10.1016/j.anihpc.2009.07.004
- Alessio Figalli and David Jerison, Quantitative stability of the Brunn-Minkowski inequality for sets of equal volume, Chinese Ann. Math. Ser. B 38 (2017), no. 2, 393–412. MR 3615496, DOI 10.1007/s11401-017-1075-8
- Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 141003, DOI 10.7146/math.scand.a-10510
- William J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 362045, DOI 10.1112/S0025579300005714
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- R. J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (2001), no. 10, 3995–4024. MR 1837217, DOI 10.1090/S0002-9947-01-02763-5
- Richard J. Gardner and Artem Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5333–5353. MR 2657682, DOI 10.1090/S0002-9947-2010-04891-3
- M. Gromov and V. D. Milman, Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces, Compositio Math. 62 (1987), no. 3, 263–282. MR 901393
- Binwu He, Gangsong Leng, and Kanghai Li, Projection problems for symmetric polytopes, Adv. Math. 207 (2006), no. 1, 73–90. MR 2264066, DOI 10.1016/j.aim.2005.11.006
- Martin Henk, Achill Schürmann, and Jörg M. Wills, Ehrhart polynomials and successive minima, Mathematika 52 (2005), no. 1-2, 1–16 (2006). MR 2261838, DOI 10.1112/S0025579300000292
- Daniel Hug, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, On the $L_p$ Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005), no. 4, 699–715. MR 2132298, DOI 10.1007/s00454-004-1149-8
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Mohammad N. Ivaki, Iterations of curvature images, Mathematika 66 (2020), no. 3, 640–648. MR 4134238, DOI 10.1112/mtk.12037
- Huaiyu Jian, Jian Lu, and Xu-Jia Wang, Nonuniqueness of solutions to the $L_p$-Minkowski problem, Adv. Math. 281 (2015), 845–856. MR 3366854, DOI 10.1016/j.aim.2015.05.010
- Katharina Jochemko and Raman Sanyal, Combinatorial mixed valuations, Adv. Math. 319 (2017), 630–652. MR 3695886, DOI 10.1016/j.aim.2017.08.032
- Daniel M. Kane, The Gaussian surface area and noise sensitivity of degree-d polynomial threshold functions, 25th Annual IEEE Conference on Computational Complexity—CCC 2010, IEEE Computer Soc., Los Alamitos, CA, 2010, pp. 205–210. MR 2932357
- Alexander V. Kolesnikov and Galyna V. Livshyts, On the Gardner-Zvavitch conjecture: symmetry in inequalities of Brunn-Minkowski type, Adv. Math. 384 (2021), Paper No. 107689, 23. MR 4238914, DOI 10.1016/j.aim.2021.107689
- Alexander V. Kolesnikov and Emanuel Milman, Sharp Poincaré-type inequality for the Gaussian measure on the boundary of convex sets, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2169, Springer, Cham, 2017, pp. 221–234. MR 3645125
- A. V. Kolesnikov and E. Milman, Local $L_p$-Brunn-Minkowski inequalities for $p<1$, Mem. Amer. Math. Soc., accepted. arXiv:1711.01089 (2018).
- L. Leindler, On a certain converse of Hölder’s inequality. II, Acta Sci. Math. (Szeged) 33 (1972), no. 3-4, 217–223. MR 2199372
- Hans Lewy, On differential geometry in the large. I. Minkowski’s problem, Trans. Amer. Math. Soc. 43 (1938), no. 2, 258–270. MR 1501942, DOI 10.1090/S0002-9947-1938-1501942-3
- Q-R. Li, J. Liu, and J. Lu, Non-uniqueness of solutions to the dual $L_p$-Minkowski problem. IMRN, accepted. arXiv:1910.06879 (2019).
- Galyna Livshyts, Arnaud Marsiglietti, Piotr Nayar, and Artem Zvavitch, On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8725–8742. MR 3710641, DOI 10.1090/tran/6928
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Jon McCammond: Prologue: Regular Polytopes, https://coxeter2011.files.wordpress.com/2011/09/prologue1.pdf
- E. Milman, Centro-affine differential geometry and the Log-Minkowski problem, arXiv:2104.12408 (2021).
- E. Milman, A sharp centro-affine isospectral inequality of Szegő-Weinberger type and the $L_p$-Minkowski problem, arXiv:2103.02994 (2021).
- Assaf Naor, The surface measure and cone measure on the sphere of $l_p^n$, Trans. Amer. Math. Soc. 359 (2007), no. 3, 1045–1079. MR 2262841, DOI 10.1090/S0002-9947-06-03939-0
- Piotr Nayar and Tomasz Tkocz, A note on a Brunn-Minkowski inequality for the Gaussian measure, Proc. Amer. Math. Soc. 141 (2013), no. 11, 4027–4030. MR 3091793, DOI 10.1090/S0002-9939-2013-11609-6
- Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI 10.1002/cpa.3160060303
- Grigoris Paouris and Elisabeth M. Werner, Relative entropy of cone measures and $L_p$ centroid bodies, Proc. Lond. Math. Soc. (3) 104 (2012), no. 2, 253–286. MR 2880241, DOI 10.1112/plms/pdr030
- Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg. MR 0478079
- András Prékopa, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. (Szeged) 32 (1971), 301–316. MR 315079
- András Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335–343. MR 404557
- Eli Putterman, Equivalence of the local and global versions of the $L^p$-Brunn-Minkowski inequality, J. Funct. Anal. 280 (2021), no. 9, Paper No. 108956, 20. MR 4220744, DOI 10.1016/j.jfa.2021.108956
- L. Rotem, A letter: The log-Brunn-Minkowski inequality for complex bodies, arXiv:1412.5321 (2014).
- Christos Saroglou, Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Dedicata 177 (2015), 353–365. MR 3370038, DOI 10.1007/s10711-014-9993-z
- Christos Saroglou, More on logarithmic sums of convex bodies, Mathematika 62 (2016), no. 3, 818–841. MR 3521355, DOI 10.1112/S0025579316000061
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Alina Stancu, The discrete planar $L_0$-Minkowski problem, Adv. Math. 167 (2002), no. 1, 160–174. MR 1901250, DOI 10.1006/aima.2001.2040
- Alina Stancu, On the number of solutions to the discrete two-dimensional $L_0$-Minkowski problem, Adv. Math. 180 (2003), no. 1, 290–323. MR 2019226, DOI 10.1016/S0001-8708(03)00005-7
- Terence Tao and Van Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR 2289012, DOI 10.1017/CBO9780511755149
- Neil S. Trudinger and Xu-Jia Wang, The Monge-Ampère equation and its geometric applications, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 467–524. MR 2483373
- B. Uhrin, Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality, Adv. Math. 109 (1994), no. 2, 288–312. MR 1304754, DOI 10.1006/aima.1994.1088
- E. B. Vinberg, Discrete linear groups generated by reflections, Math. USSR Izvestia 5 (1971), 1083–1119.
- Dongmeng Xi and Gangsong Leng, Dar’s conjecture and the log-Brunn-Minkowski inequality, J. Differential Geom. 103 (2016), no. 1, 145–189. MR 3488132
- Ge Xiong, Extremum problems for the cone volume functional of convex polytopes, Adv. Math. 225 (2010), no. 6, 3214–3228. MR 2729006, DOI 10.1016/j.aim.2010.05.016
Additional Information
- Károly J. Böröczky
- ORCID: 0000-0002-2882-4496
- Pavlos Kalantzopoulos
- ORCID: 0000-0002-7287-348X
- Received by editor(s): February 27, 2020
- Received by editor(s) in revised form: July 5, 2021, January 26, 2022, and February 28, 2022
- Published electronically: June 8, 2022
- Additional Notes: This research was partially supported by National Research, Development and Innovation Office, NKFI K 132002.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5987-6013
- MSC (2020): Primary 52A40, 05E18, 35J96
- DOI: https://doi.org/10.1090/tran/8691
- MathSciNet review: 4469244