## Huber’s theorem for manifolds with $L^\frac {n}{2}$ integrable Ricci curvatures

HTML articles powered by AMS MathViewer

- by Bo Chen and Yuxiang Li PDF
- Trans. Amer. Math. Soc.
**375**(2022), 5907-5922 Request permission

## Abstract:

In this paper, we generalize Huber’s finite points conformal compactification theorem to higher dimensional manifolds, which are conformally compact with $L^\frac {n}{2}$ integrable Ricci curvatures.## References

- Robert A. Adams and John J. F. Fournier,
*Sobolev spaces*, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR**2424078** - Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille,
*Variational analysis in Sobolev and BV spaces*, 2nd ed., MOS-SIAM Series on Optimization, vol. 17, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2014. Applications to PDEs and optimization. MR**3288271**, DOI 10.1137/1.9781611973488 - Gilles Carron,
*Euclidean volume growth for complete Riemannian manifolds*, Milan J. Math.**88**(2020), no. 2, 455–478. MR**4182081**, DOI 10.1007/s00032-020-00321-8 - Gilles Carron and Marc Herzlich,
*The Huber theorem for non-compact conformally flat manifolds*, Comment. Math. Helv.**77**(2002), no. 1, 192–220. MR**1898398**, DOI 10.1007/s00014-002-8336-0 - Sun-Yung Alice Chang,
*Conformal invariants and partial differential equations*, Bull. Amer. Math. Soc. (N.S.)**42**(2005), no. 3, 365–393. MR**2149088**, DOI 10.1090/S0273-0979-05-01058-X - Sun-Yung A. Chang, Jie Qing, and Paul C. Yang,
*Compactification of a class of conformally flat 4-manifold*, Invent. Math.**142**(2000), no. 1, 65–93. MR**1784799**, DOI 10.1007/s002220000083 - C. Dong, Y. Li and K. Xu,
*Sobolev metrics and conformal metrics with $\int _{M}|R|^{\frac {n}{2}}d\mu _g$ bounds*, Commun. Contemp. Math., to appear. - Qing Han and Fanghua Lin,
*Elliptic partial differential equations*, 2nd ed., Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011. MR**2777537** - Alfred Huber,
*On subharmonic functions and differential geometry in the large*, Comment. Math. Helv.**32**(1957), 13–72. MR**94452**, DOI 10.1007/BF02564570 - Tadeusz Iwaniec and Gaven Martin,
*The Liouville theorem*, Analysis and topology, World Sci. Publ., River Edge, NJ, 1998, pp. 339–361. MR**1667820** - John M. Lee and Thomas H. Parker,
*The Yamabe problem*, Bull. Amer. Math. Soc. (N.S.)**17**(1987), no. 1, 37–91. MR**888880**, DOI 10.1090/S0273-0979-1987-15514-5 - Y. Li and Z. Wang,
*Manifolds for which Huber’s Theorem holds*, arXiv:2108.06708, 2021. - Shiguang Ma and Jie Qing,
*On Huber-type theorems in general dimensions*, Adv. Math.**395**(2022), Paper No. 108145, 37. MR**4355738**, DOI 10.1016/j.aim.2021.108145 - Peter Petersen,
*Riemannian geometry*, 3rd ed., Graduate Texts in Mathematics, vol. 171, Springer, Cham, 2016. MR**3469435**, DOI 10.1007/978-3-319-26654-1 - K. Xu,
*Compactness of isospectral conformal metrics on 4-manifolds*, arXiv:1911.13100, 2019.

## Additional Information

**Bo Chen**- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Email: chenbo@mail.tsinghua.edu.cn
**Yuxiang Li**- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- MR Author ID: 680929
- ORCID: 0000-0002-6725-4000
- Email: liyuxiang@mail.tsinghua.edu.cn
- Received by editor(s): November 24, 2021
- Received by editor(s) in revised form: February 16, 2022
- Published electronically: May 23, 2022
- Additional Notes: The first author was partially supported by China Postdoctoral Science Foundation, Grant No. 2021M701930. The second author was partially supported by NSFC 11971451 and NSFC 12141103
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**375**(2022), 5907-5922 - MSC (2020): Primary 53C18, 53C21
- DOI: https://doi.org/10.1090/tran/8703
- MathSciNet review: 4469241

Dedicated: Dedicated to Prof. Ernst Kuwert for his sixtieth birthday