On the tangent space to the Hilbert scheme of points in $\mathbf {P}^3$
HTML articles powered by AMS MathViewer
- by Ritvik Ramkumar and Alessio Sammartano PDF
- Trans. Amer. Math. Soc. 375 (2022), 6179-6203 Request permission
Abstract:
In this paper we study the tangent space to the Hilbert scheme $\mathrm {Hilb}^d \mathbf {P}^3$, motivated by Haiman’s work on $\mathrm {Hilb}^d \mathbf {P}^2$ and by a long-standing conjecture of Briançon and Iarrobino [J. Algebra 55 (1978), pp. 536–544] on the most singular point in $\mathrm {Hilb}^d \mathbf {P}^n$. For points parametrizing monomial subschemes, we consider a decomposition of the tangent space into six distinguished subspaces, and show that a fat point exhibits an extremal behavior in this respect. This decomposition is also used to characterize smooth monomial points on the Hilbert scheme. We prove the first Briançon-Iarrobino conjecture up to a factor of $\frac {4}{3}$, and improve the known asymptotic bound on the dimension of $\mathrm {Hilb}^d \mathbf {P}^3$. Furthermore, we construct infinitely many counterexamples to the second Briançon-Iarrobino conjecture, and we also settle a weaker conjecture of Sturmfels in the negative.References
- Davide Alberelli and Paolo Lella, Strongly stable ideals and Hilbert polynomials, J. Softw. Algebra Geom. 9 (2019), no. 1, 1–9. MR 3919083, DOI 10.2140/jsag.2019.9.1
- Klaus Altmann and Jan Arthur Christophersen, Cotangent cohomology of Stanley-Reisner rings, Manuscripta Math. 115 (2004), no. 3, 361–378. MR 2102057, DOI 10.1007/s00229-004-0496-3
- Klaus Altmann and Jan Arthur Christophersen, Deforming Stanley-Reisner schemes, Math. Ann. 348 (2010), no. 3, 513–537. MR 2677892, DOI 10.1007/s00208-010-0490-x
- American Institute of Mathematics Problem List, Components of Hilbert schemes, 2010, available at http://aimpl.org/hilbertschemes.
- Daniele Arcara, Aaron Bertram, Izzet Coskun, and Jack Huizenga, The minimal model program for the Hilbert scheme of points on $\Bbb {P}^2$ and Bridgeland stability, Adv. Math. 235 (2013), 580–626. MR 3010070, DOI 10.1016/j.aim.2012.11.018
- Kai Behrend, Jim Bryan, and Balázs Szendrői, Motivic degree zero Donaldson-Thomas invariants, Invent. Math. 192 (2013), no. 1, 111–160. MR 3032328, DOI 10.1007/s00222-012-0408-1
- Kai Behrend and Barbara Fantechi, Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008), no. 3, 313–345. MR 2407118, DOI 10.2140/ant.2008.2.313
- J. Briançon and A. Iarrobino, Dimension of the punctual Hilbert scheme, J. Algebra 55 (1978), no. 2, 536–544. MR 523473, DOI 10.1016/0021-8693(78)90236-3
- Jim Bryan and Martijn Kool, Donaldson-Thomas invariants of local elliptic surfaces via the topological vertex, Forum Math. Sigma 7 (2019), Paper No. e7, 45. MR 3925498, DOI 10.1017/fms.2019.1
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Dustin A. Cartwright, Daniel Erman, Mauricio Velasco, and Bianca Viray, Hilbert schemes of 8 points, Algebra Number Theory 3 (2009), no. 7, 763–795. MR 2579394, DOI 10.2140/ant.2009.3.763
- Giulio Caviglia and Alessio Sammartano, Syzygies in Hilbert schemes of complete intersections, arXiv:1903.08770 (2021).
- Aldo Conca and Jessica Sidman, Generic initial ideals of points and curves, J. Symbolic Comput. 40 (2005), no. 3, 1023–1038. MR 2167697, DOI 10.1016/j.jsc.2005.01.009
- Theodosios Douvropoulos, Joachim Jelisiejew, Bernt Ivar Utstøl Nødland, and Zach Teitler, The Hilbert scheme of 11 points in $\Bbb A^3$ is irreducible, Combinatorial algebraic geometry, Fields Inst. Commun., vol. 80, Fields Inst. Res. Math. Sci., Toronto, ON, 2017, pp. 321–352. MR 3752506
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Geir Ellingsrud and Stein Arild Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352. MR 870732, DOI 10.1007/BF01389419
- John Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511–521. MR 237496, DOI 10.2307/2373541
- Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
- Alexander Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 221, 249–276 (French). MR 1611822
- Robin Hartshorne, Connectedness of the Hilbert scheme, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 5–48. MR 213368
- Mark Haiman, $t,q$-Catalan numbers and the Hilbert scheme, Discrete Math. 193 (1998), no. 1-3, 201–224. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661369, DOI 10.1016/S0012-365X(98)00141-1
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919, DOI 10.1090/S0894-0347-01-00373-3
- A. Iarrobino, Reducibility of the families of $0$-dimensional schemes on a variety, Invent. Math. 15 (1972), 72–77. MR 301010, DOI 10.1007/BF01418644
- Anthony Iarrobino, Compressed algebras: Artin algebras having given socle degrees and maximal length, Trans. Amer. Math. Soc. 285 (1984), no. 1, 337–378. MR 748843, DOI 10.1090/S0002-9947-1984-0748843-4
- Joachim Jelisiejew, Pathologies on the Hilbert scheme of points, Invent. Math. 220 (2020), no. 2, 581–610. MR 4081138, DOI 10.1007/s00222-019-00939-5
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
- Bernd Sturmfels, Four counterexamples in combinatorial algebraic geometry, J. Algebra 230 (2000), no. 1, 282–294. MR 1774768, DOI 10.1006/jabr.1999.7950
- G. Valla, On the Betti numbers of perfect ideals, Compositio Math. 91 (1994), no. 3, 305–319. MR 1273653
Additional Information
- Ritvik Ramkumar
- Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
- MR Author ID: 1213723
- Email: ritvik@math.berkeley.edu
- Alessio Sammartano
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133, Milano, Italy
- MR Author ID: 942872
- ORCID: 0000-0002-0377-1375
- Email: alessio.sammartano@polimi.it
- Received by editor(s): March 24, 2021
- Received by editor(s) in revised form: January 4, 2022
- Published electronically: July 13, 2022
- Additional Notes: The first author was partially supported by an NSERC PGSD scholarship. The second author was partially supported by NSF Grant No. 1440140, while he was a Postdoctoral Fellow at the Mathematical Sciences Research Institute in Berkeley.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6179-6203
- MSC (2020): Primary 14C05; Secondary 13D07, 05E40
- DOI: https://doi.org/10.1090/tran/8657
- MathSciNet review: 4474889