Simultaneous rational approximation to successive powers of a real number
HTML articles powered by AMS MathViewer
- by Anthony Poëls and Damien Roy PDF
- Trans. Amer. Math. Soc. 375 (2022), 6385-6415 Request permission
Abstract:
We develop new tools leading, for each integer $n\ge 4$, to a significantly improved upper bound for the uniform exponent of rational approximation $\widehat {\lambda }_n(\xi )$ to successive powers $1,\xi ,\dots ,\xi ^n$ of a given real transcendental number $\xi$. As an application, we obtain a refined lower bound for the exponent of approximation to $\xi$ by algebraic integers of degree at most $n+1$. The new lower bound is $n/2+a\sqrt {n}+4/3$ with $a=(1-\log (2))/2\simeq 0.153$, instead of the current $n/2+\mathcal {O}(1)$.References
- Dmitry Badziahin, Upper bounds for the uniform simultaneous Diophantine exponents, Preprint, arXiv:2107.11134 [math.NT], 23 July 2021, 19 pages.
- Dmitry Badziahin and Johannes Schleischitz, An improved bound in Wirsing’s problem, Trans. Amer. Math. Soc. 374 (2021), no. 3, 1847–1861. MR 4216725, DOI 10.1090/tran/8245
- Yann Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160, Cambridge University Press, Cambridge, 2004. MR 2136100, DOI 10.1017/CBO9780511542886
- Yann Bugeaud and Michel Laurent, On exponents of homogeneous and inhomogeneous Diophantine approximation, Mosc. Math. J. 5 (2005), no. 4, 747–766, 972. MR 2266457, DOI 10.17323/1609-4514-2005-5-4-747-766
- Yann Bugeaud and Michel Laurent, Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 3, 773–804 (English, with English and French summaries). MR 2149403, DOI 10.5802/aif.2114
- Yann Bugeaud and Olivier Teulié, Approximation d’un nombre réel par des nombres algébriques de degré donné, Acta Arith. 93 (2000), no. 1, 77–86 (French). MR 1760090, DOI 10.4064/aa-93-1-77-86
- H. Davenport and Wolfgang M. Schmidt, Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967/68), 169–176. MR 219476, DOI 10.4064/aa-13-2-169-176
- H. Davenport and Wolfgang M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1968/69), 393–416. MR 246822, DOI 10.4064/aa-15-4-393-416
- Stéphane Fischler, Palindromic prefixes and Diophantine approximation, Monatsh. Math. 151 (2007), no. 1, 11–37. MR 2317388, DOI 10.1007/s00605-006-0425-5
- Michel Laurent, Simultaneous rational approximation to the successive powers of a real number, Indag. Math. (N.S.) 14 (2003), no. 1, 45–53. MR 2015598, DOI 10.1016/S0019-3577(03)90070-X
- Antoine Marnat and Nikolay G. Moshchevitin, An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation, Mathematika 66 (2020), no. 3, 818–854. MR 4134247, DOI 10.1112/mtk.12045
- Ngoc Ai Van Nguyen, Anthony Poëls, and Damien Roy, A transference principle for simultaneous rational approximation, J. Théor. Nombres Bordeaux 32 (2020), no. 2, 387–402 (English, with English and French summaries). MR 4174276, DOI 10.5802/jtnb.1127
- Anthony Poëls, Exponents of diophantine approximation in dimension 2 for numbers of Sturmian type, Math. Z. 294 (2020), no. 3-4, 951–993. MR 4074029, DOI 10.1007/s00209-019-02280-2
- Anthony Poëls, Exponents of Diophantine approximation in dimension two for a general class of numbers, Mosc. J. Comb. Number Theory, 26 pages, To appear, arXiv:2107.05618 [math.NT].
- Damien Roy, Approximation to real numbers by cubic algebraic integers. I, Proc. London Math. Soc. (3) 88 (2004), no. 1, 42–62. MR 2018957, DOI 10.1112/S002461150301428X
- Damien Roy, Approximation to real numbers by cubic algebraic integers. II, Ann. of Math. (2) 158 (2003), no. 3, 1081–1087. MR 2031862, DOI 10.4007/annals.2003.158.1081
- Damien Roy, On two exponents of approximation related to a real number and its square, Canad. J. Math. 59 (2007), no. 1, 211–224. MR 2289424, DOI 10.4153/CJM-2007-009-3
- Damien Roy, On simultaneous rational approximations to a real number, its square, and its cube, Acta Arith. 133 (2008), no. 2, 185–197. MR 2417464, DOI 10.4064/aa133-2-6
- Damien Roy and Michel Waldschmidt, Diophantine approximation by conjugate algebraic integers, Compos. Math. 140 (2004), no. 3, 593–612. MR 2041771, DOI 10.1112/S0010437X03000708
- Damien Roy and Dmitrij Zelo, Measures of algebraic approximation to Markoff extremal numbers, J. Lond. Math. Soc. (2) 83 (2011), no. 2, 407–430. MR 2776644, DOI 10.1112/jlms/jdq077
- Johannes Schleischitz, On the spectrum of Diophantine approximation constants, Mathematika 62 (2016), no. 1, 79–100. MR 3450571, DOI 10.1112/S0025579315000182
- Johannes Schleischitz, An equivalence principle between polynomial and simultaneous Diophantine approximation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 1063–1085. MR 4288627, DOI 10.2422/2036-2145.201902_{0}14
- Johannes Schleischitz, On geometry of numbers and uniform rational approximation to the Veronese curve, Period. Math. Hungar. 83 (2021), no. 2, 233–249. MR 4344130, DOI 10.1007/s10998-021-00382-1
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
- W. M. Schmidt, Open problems in Diophantine approximation, Diophantine approximations and transcendental numbers (Luminy, 1982) Progr. Math., vol. 31, Birkhäuser Boston, Boston, MA, 1983, pp. 271–287. MR 702204
- Wolfgang M. Schmidt, Diophantine approximations and Diophantine equations, Lecture Notes in Mathematics, vol. 1467, Springer-Verlag, Berlin, 1991. MR 1176315, DOI 10.1007/BFb0098246
- Olivier Teulié, Approximation d’un nombre réel par des unités algébriques, Monatsh. Math. 132 (2001), no. 2, 169–176 (French, with English summary). MR 1838405, DOI 10.1007/s006050170052
- Olivier Teulié, Approximations simultanées de nombres algébriques de $\mathbf Q_p$ par des rationnels, Monatsh. Math. 137 (2002), no. 4, 313–324 (French, with English summary). MR 1947917, DOI 10.1007/s00605-002-0516-x
Additional Information
- Anthony Poëls
- Affiliation: Département de mathématiques, Université d’Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Address at time of publication: Department of Mathematics, College of Science & Technology, Nihon University, Kanda, Chiyoda, Tokyo 101-8308, Japan
- Email: anthony.poels@uottawa.ca
- Damien Roy
- Affiliation: Département de mathématiques, Université d’Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- MR Author ID: 265895
- ORCID: 0000-0002-0559-4472
- Email: droy@uottawa.ca
- Received by editor(s): December 21, 2021
- Received by editor(s) in revised form: February 9, 2022
- Published electronically: June 17, 2022
- Additional Notes: The work of both authors was partially supported by NSERC
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6385-6415
- MSC (2020): Primary 11J13; Secondary 11J82
- DOI: https://doi.org/10.1090/tran/8671
- MathSciNet review: 4474896