Surfaces on the Severi line in positive characteristic
HTML articles powered by AMS MathViewer
- by Yi Gu, Xiaotao Sun and Mingshuo Zhou PDF
- Trans. Amer. Math. Soc. 375 (2022), 6015-6041 Request permission
Abstract:
Let $\mathbf {k}$ be an algebraically closed field, a minimal surface $X$ over $\mathbf {k}$ of maximal Albanese dimension is called on the Severi line if the ‘Severi equality’: $K^2_X=4\chi (\mathcal {O}_X)$ holds. We prove that $X$ is on the Severi line if and only if its canonical model $X_{\mathrm {can}}$ admits a flat double cover over an Abelian surface.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Lucian Bădescu, Algebraic surfaces, Universitext, Springer-Verlag, New York, 2001. Translated from the 1981 Romanian original by Vladimir Maşek and revised by the author. MR 1805816, DOI 10.1007/978-1-4757-3512-3
- Edoardo Ballico, On singular curves in the case of positive characteristic, Math. Nachr. 141 (1989), 267–273. MR 1014431, DOI 10.1002/mana.19891410124
- Miguel A. Barja, Generalized Clifford-Severi inequality and the volume of irregular varieties, Duke Math. J. 164 (2015), no. 3, 541–568. MR 3314480, DOI 10.1215/00127094-2871306
- Miguel Ángel Barja, Rita Pardini, and Lidia Stoppino, Surfaces on the Severi line, J. Math. Pures Appl. (9) 105 (2016), no. 5, 734–743 (English, with English and French summaries). MR 3479190, DOI 10.1016/j.matpur.2015.11.012
- Miguel Ángel Barja, Rita Pardini, and Lidia Stoppino, Higher-dimensional Clifford-Severi equalities, Commun. Contemp. Math. 22 (2020), no. 8, 1950079, 15. MR 4142335, DOI 10.1142/S0219199719500792
- W. Barth, C. Hulek, C. Peters, and Ven A. Van de, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics.
- F. Catanese, Moduli of surfaces of general type, Algebraic geometry—open problems (Ravello, 1982) Lecture Notes in Math., vol. 997, Springer, Berlin-New York, 1983, pp. 90–112. MR 714742
- François R. Cossec and Igor V. Dolgachev, Enriques surfaces. I, Progress in Mathematics, vol. 76, Birkhäuser Boston, Inc., Boston, MA, 1989. MR 986969, DOI 10.1007/978-1-4612-3696-2
- Torsten Ekedahl, Foliations and inseparable morphisms, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 139–149. MR 927978, DOI 10.1090/pspum/046.2/927978
- Torsten Ekedahl, Canonical models of surfaces of general type in positive characteristic, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 97–144. MR 972344, DOI 10.1007/BF02699128
- Yi Gu, On algebraic surfaces of general type with negative $c_2$, Compos. Math. 152 (2016), no. 9, 1966–1998. MR 3568945, DOI 10.1112/S0010437X16007491
- Y. Gu, X. Sun, and M. Zhou, Slope inequalities and a Miyaoka-Yau type inequality, arXiv:1903.04158v2.
- Joe Harris, The genus of space curves, Math. Ann. 249 (1980), no. 3, 191–204. MR 579101, DOI 10.1007/BF01363895
- Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427
- Masayuki Hirokado, Singularities of multiplicative $p$-closed vector fields and global $1$-forms of Zariski surfaces, J. Math. Kyoto Univ. 39 (1999), no. 3, 455–468. MR 1718718, DOI 10.1215/kjm/1250517864
- Jean-Pierre Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983 (French). MR 725671
- Steven Lawrence Kleiman and Renato Vidal Martins, The canonical model of a singular curve, Geom. Dedicata 139 (2009), 139–166. MR 2481842, DOI 10.1007/s10711-008-9331-4
- Qing Liu and Dino Lorenzini, Models of curves and finite covers, Compositio Math. 118 (1999), no. 1, 61–102. MR 1705977, DOI 10.1023/A:1001141725199
- Xin Lu and Kang Zuo, On Severi type inequalities for irregular surfaces, Int. Math. Res. Not. IMRN 1 (2019), 231–248. MR 3897429, DOI 10.1093/imrn/rnx127
- Xin Lu and Kang Zuo, On the gonality and the slope of a fibered surface, Adv. Math. 324 (2018), 336–354. MR 3733889, DOI 10.1016/j.aim.2017.11.014
- Margarida Mendes Lopes and Rita Pardini, The geography of irregular surfaces, Current developments in algebraic geometry, Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2012, pp. 349–378. MR 2931875
- Marco Manetti, Surfaces of Albanese general type and the Severi conjecture, Math. Nachr. 261/262 (2003), 105–122. MR 2020390, DOI 10.1002/mana.200310115
- Rita Pardini, The Severi inequality $K^2\geq 4\chi$ for surfaces of maximal Albanese dimension, Invent. Math. 159 (2005), no. 3, 669–672. MR 2125737, DOI 10.1007/s00222-004-0399-7
- Jürgen Rathmann, The uniform position principle for curves in characteristic $p$, Math. Ann. 276 (1987), no. 4, 565–579. MR 879536, DOI 10.1007/BF01456986
- Miles Reid, $\pi _{1}$ for surfaces with small $K^{2}$, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 534–544. MR 555716
- N. I. Shepherd-Barron, Geography for surfaces of general type in positive characteristic, Invent. Math. 106 (1991), no. 2, 263–274. MR 1128215, DOI 10.1007/BF01243913
- Jean-Pierre Serre, Quelques propriétés des variétés abéliennes en caractéristique $p$, Amer. J. Math. 80 (1958), 715–739 (French). MR 98100, DOI 10.2307/2372780
- Hao Sun, Xiaotao Sun, and Mingshuo Zhou, Remarks on Xiao’s approach of slope inequalities, Asian J. Math. 22 (2018), no. 4, 691–703. MR 3862057, DOI 10.4310/AJM.2018.v22.n4.a5
- Xiaotao Sun, Frobenius morphism and semi-stable bundles, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 161–182. MR 2732093, DOI 10.2969/aspm/06010161
- Gang Xiao, Fibered algebraic surfaces with low slope, Math. Ann. 276 (1987), no. 3, 449–466. MR 875340, DOI 10.1007/BF01450841
- Xinyi Yuan and Tong Zhang, Relative Noether inequality on fibered surfaces, Adv. Math. 259 (2014), 89–115. MR 3197653, DOI 10.1016/j.aim.2014.03.018
- Tong Zhang, Severi inequality for varieties of maximal Albanese dimension, Math. Ann. 359 (2014), no. 3-4, 1097–1114. MR 3231026, DOI 10.1007/s00208-014-1025-7
Additional Information
- Yi Gu
- Affiliation: School of Mathematical Sciences, Soochow University, Suzhou 215006, People’s Republic of China
- ORCID: 0000-0003-1474-7896
- Email: sudaguyi2017@suda.edu
- Xiaotao Sun
- Affiliation: Center of Applied Mathematics, School of Mathematics, Tianjin University, Tianjin 300072, People’s Republic of China
- Email: xiaotaosun@tju.edu.cn
- Mingshuo Zhou
- Affiliation: Center of Applied Mathematics, School of Mathematics, Tianjin University, Tianjin 300072, People’s Republic of China
- MR Author ID: 1027998
- Email: zhoumingshuo@amss.ac.cn
- Received by editor(s): January 10, 2021
- Received by editor(s) in revised form: June 22, 2021
- Published electronically: June 30, 2022
- Additional Notes: The first author was supported by the NSFC (No. 11801391) and NSF of Jiangsu Province (No. BK20180832)
The second and third authors were supported by the NSFC (No.11921001, No.11831013 and No.11501154).
The third author was also supported by NSF of Zhejiang Province (No. LQ16A010005) - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6015-6041
- DOI: https://doi.org/10.1090/tran/8676
- MathSciNet review: 4474883