Minimal direct products
HTML articles powered by AMS MathViewer
- by Matúš Dirbák, Ľubomír Snoha and Vladimír Špitalský PDF
- Trans. Amer. Math. Soc. 375 (2022), 6453-6506 Request permission
Abstract:
A space is called minimal if it admits a minimal continuous selfmap. We introduce and study the notion of product-minimality. We call a compact metrizable space $Y$ product-minimal if, for every minimal system $(X,T)$ given by a metrizable space $X$ and a continuous selfmap $T$, there is a continuous map $S\colon Y\to Y$ such that the product $(X\times Y,T\times S)$ is minimal. If such a map $S$ always exists in the class of homeomorphisms, we say that $Y$ is a homeo-product-minimal space. We show that many classical examples of minimal spaces, including compact connected metrizable abelian groups, compact connected manifolds without boundary admitting a free action of a nontrivial compact connected Lie group, and many others, are in fact homeo-product-minimal.
Then we give examples of metrizable continua $X$ admitting both minimal homeomorphisms and minimal noninvertible maps, whose squares $X\times X$ are not minimal (i.e., they admit neither minimal homeomorphisms nor minimal noninvertible maps). This shows that the product of two minimal spaces need not be minimal.
References
- Hirotada Anzai and Shizuo Kakutani, Bohr compactifications of a locally compact Abelian group. II, Proc. Imp. Acad. Tokyo 19 (1943), 533–539. MR 15123
- Francisco Balibrea, Tomasz Downarowicz, Roman Hric, L’ubomír Snoha, and Vladimír Špitalský, Almost totally disconnected minimal systems, Ergodic Theory Dynam. Systems 29 (2009), no. 3, 737–766. MR 2505316, DOI 10.1017/S0143385708000540
- David P. Bellamy and Janusz M. Lysko, Factorwise rigidity of the product of two pseudo-arcs, Proceedings of the 1983 topology conference (Houston, Tex., 1983), 1983, pp. 21–27. MR 738465
- Andrzej Biś, Hiromichi Nakayama, and PawełWalczak, Locally connected exceptional minimal sets of surface homeomorphisms, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 711–731 (English, with English and French summaries). MR 2097420
- Alexander Blokh, Lex Oversteegen, and E. D. Tymchatyn, On minimal maps of 2-manifolds, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 41–57. MR 2122911, DOI 10.1017/S0143385704000331
- Jozef Bobok, Pavel Pyrih, and Benjamin Vejnar, On minimal homeomorphisms on Peano continua, Topology Appl. 210 (2016), 263–268. MR 3539738, DOI 10.1016/j.topol.2016.07.022
- J. P. Boroński, Alex Clark, and P. Oprocha, A compact minimal space $Y$ such that its square $Y\times Y$ is not minimal, Adv. Math. 335 (2018), 261–275. MR 3836665, DOI 10.1016/j.aim.2018.07.011
- Jan P. Boroński, Jernej Činč, and Magdalena Foryś-Krawiec, On rigid minimal spaces, J. Dynam. Differential Equations 33 (2021), no. 2, 1023–1034. MR 4248644, DOI 10.1007/s10884-020-09845-4
- Jan P. Boroński, Judy Kennedy, Xiao-Chuan Liu, and Piotr Oprocha, Minimal non-invertible maps on the pseudo-circle, J. Dynam. Differential Equations 33 (2021), no. 4, 1897–1916. MR 4333387, DOI 10.1007/s10884-020-09877-w
- K. Borsuk, On embedding curves in surfaces, Fund. Math. 59 (1966), 73–89. MR 200910, DOI 10.4064/fm-59-1-73-89
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Henk Bruin, Sergiĭ Kolyada, and Ľubomír Snoha, Minimal nonhomogeneous continua, Colloq. Math. 95 (2003), no. 1, 123–132. MR 1967559, DOI 10.4064/cm95-1-10
- A. V. Černavskiĭ, Local contractibility of the group of homeomorphisms of a manifold. , Mat. Sb. (N.S.) 79 (121) (1969), 307–356 (Russian). MR 0259925
- Matúš Dirbák, Minimal extensions of flows with amenable acting groups, Israel J. Math. 207 (2015), no. 2, 581–615. MR 3359712, DOI 10.1007/s11856-015-1184-6
- Matúš Dirbák and Peter Maličký, On the construction of non-invertible minimal skew products, J. Math. Anal. Appl. 375 (2011), no. 2, 436–442. MR 2735534, DOI 10.1016/j.jmaa.2010.09.042
- Tomasz Downarowicz, Ľubomír Snoha, and Dariusz Tywoniuk, Minimal spaces with cyclic group of homeomorphisms, J. Dynam. Differential Equations 29 (2017), no. 1, 243–257. MR 3612974, DOI 10.1007/s10884-015-9433-2
- Eldon Dyer, A fixed point theorem, Proc. Amer. Math. Soc. 7 (1956), 662–672. MR 78693, DOI 10.1090/S0002-9939-1956-0078693-4
- Beno Eckmann, Über monothetische Gruppen, Comment. Math. Helv. 16 (1944), 249–263 (German). MR 11302, DOI 10.1007/BF02568577
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- Jir\B{o} Egawa, Eigenvalues of compact minimal flows, Math. Sem. Notes Kobe Univ. 10 (1982), no. 2, 281–291. MR 704910
- Albert Fathi and Michael R. Herman, Existence de difféomorphismes minimaux, Dynamical systems, Vol. I—Warsaw, Astérisque, No. 49, Soc. Math. France, Paris, 1977, pp. 37–59 (French). MR 0482843
- Bassam R. Fayad, Topologically mixing and minimal but not ergodic, analytic transformation on $\mathbf T^5$, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 3, 277–285. MR 1817089, DOI 10.1007/BF01241630
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Eli Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003. MR 1958753, DOI 10.1090/surv/101
- S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math. 34 (1979), no. 4, 321–336 (1980). MR 570889, DOI 10.1007/BF02760611
- W. H. Gottschalk, Orbit-closure decompositions and almost periodic properties, Bull. Amer. Math. Soc. 50 (1944), 915–919. MR 11436, DOI 10.1090/S0002-9904-1944-08262-1
- Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0348781
- Charles L. Hagopian, A characterization of solenoids, Pacific J. Math. 68 (1977), no. 2, 425–435. MR 458381
- Michael Handel, A pathological area preserving $C^{\infty }$ diffeomorphism of the plane, Proc. Amer. Math. Soc. 86 (1982), no. 1, 163–168. MR 663889, DOI 10.1090/S0002-9939-1982-0663889-6
- S. Hartman and C. Ryll-Nardzewski, Zur Theorie der lokal-kompakten Abelschen Gruppen, Colloq. Math. 4 (1957), 157–188 (German). MR 87886, DOI 10.4064/cm-4-2-157-188
- Karl H. Hofmann and Sidney A. Morris, The structure of compact groups, Second revised and augmented edition, De Gruyter Studies in Mathematics, vol. 25, Walter de Gruyter & Co., Berlin, 2006. A primer for the student—a handbook for the expert. MR 2261490, DOI 10.1515/9783110199772
- Sergii Kolyada, L’ubomír Snoha, and Sergei Trofimchuk, Minimal sets of fibre-preserving maps in graph bundles, Math. Z. 278 (2014), no. 1-2, 575–614. MR 3267591, DOI 10.1007/s00209-014-1327-1
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- K. Kuperberg, W. Kuperberg, and W. R. R. Transue, On the $2$-homogeneity of Cartesian products, Fund. Math. 110 (1980), no. 2, 131–134. MR 600586, DOI 10.4064/fm-110-2-131-134
- Patrick D. McSwiggen, Diffeomorphisms of the torus with wandering domains, Proc. Amer. Math. Soc. 117 (1993), no. 4, 1175–1186. MR 1154247, DOI 10.1090/S0002-9939-1993-1154247-6
- Sergei Merenkov, No round wandering domains for $C^1$-diffeomorphisms of tori, Ergodic Theory Dynam. Systems 39 (2019), no. 11, 3127–3135. MR 4015145, DOI 10.1017/etds.2018.11
- James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [ MR0464128]. MR 3728284
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- Alec Norton, Minimal sets, wandering domains, and rigidity in the $2$-torus, Continuum theory and dynamical systems (Arcata, CA, 1989) Contemp. Math., vol. 117, Amer. Math. Soc., Providence, RI, 1991, pp. 129–138. MR 1112810, DOI 10.1090/conm/117/13
- Alec Norton and John A. Velling, Conformal irregularity for Denjoy diffeomorphisms of the $2$-torus, Rocky Mountain J. Math. 24 (1994), no. 2, 655–671. MR 1277351, DOI 10.1216/rmjm/1181072424
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320–324. MR 99638, DOI 10.4064/fm-45-1-320-324
Additional Information
- Matúš Dirbák
- Affiliation: Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
- Email: matus.dirbak@umb.sk
- Ľubomír Snoha
- Affiliation: Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
- MR Author ID: 250583
- ORCID: 0000-0001-8796-4731
- Email: lubomir.snoha@umb.sk
- Vladimír Špitalský
- Affiliation: Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
- Email: vladimir.spitalsky@umb.sk
- Received by editor(s): May 14, 2020
- Received by editor(s) in revised form: February 23, 2022, and February 25, 2022
- Published electronically: June 17, 2022
- Additional Notes: This work was supported by the Slovak Research and Development Agency under contract No. APVV-15-0439 and partially by VEGA grant 1/0158/20.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6453-6506
- MSC (2020): Primary 37B05; Secondary 37B45
- DOI: https://doi.org/10.1090/tran/8692
- MathSciNet review: 4474898
Dedicated: Dedicated to the memory of Jaroslav Smítal