Feller’s upper-lower class test in Euclidean space
HTML articles powered by AMS MathViewer
- by Uwe Einmahl PDF
- Trans. Amer. Math. Soc. 375 (2022), 6575-6596 Request permission
Abstract:
We provide an extension of Feller’s upper-lower class test for the Hartman-Wintner LIL to the LIL in Euclidean space. We obtain this result as a corollary to a general upper-lower class test for $\Gamma _n T_n$ where $T_n=\sum _{j=1}^n Z_j$ is a sum of i.i.d. d-dimensional standard normal random vectors and $\Gamma _n$ is a convergent sequence of symmetric non-negative definite $(d,d)$-matrices. In the process we derive new bounds for the tail probabilities of $d$-dimensional normally distributed random vectors.References
- István Berkes, Siegfried Hörmann, and Michel Weber, Upper-lower class tests for weighted i.i.d. sequences and martingales, J. Theoret. Probab. 23 (2010), no. 2, 428–446. MR 2644868, DOI 10.1007/s10959-009-0219-5
- Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662, DOI 10.1007/978-1-4612-0653-8
- G. Dierickx, A general Darling-Erdös theorem and integral test for sums of independent and identically distributed random vectors in Euclidean space, Ph.D. thesis, Vrije Universiteit Brussel, Belgium, 2018.
- Gauthier Dierickx and Uwe Einmahl, A general Darling-Erdős theorem in Euclidean space, J. Theoret. Probab. 31 (2018), no. 2, 1142–1165. MR 3803927, DOI 10.1007/s10959-016-0728-y
- Uwe Einmahl, A note on the law of the iterated logarithm in Hilbert space, Probab. Theory Related Fields 82 (1989), no. 2, 213–223. MR 998931, DOI 10.1007/BF00354760
- Uwe Einmahl, The Darling-Erdős theorem for sums of i.i.d. random variables, Probab. Theory Related Fields 82 (1989), no. 2, 241–257. MR 998933, DOI 10.1007/BF00354762
- Uwe Einmahl, On the almost sure behavior of sums of i.i.d. random variables in Hilbert space, Ann. Probab. 19 (1991), no. 3, 1227–1263. MR 1112414
- Uwe Einmahl, Exact convergence rates for the bounded law of the iterated logarithm in Hilbert space, Probab. Theory Related Fields 92 (1992), no. 2, 177–194. MR 1161185, DOI 10.1007/BF01194920
- Uwe Einmahl and Deli Li, Characterization of LIL behavior in Banach space, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6677–6693. MR 2434306, DOI 10.1090/S0002-9947-08-04522-4
- Paul Erdös, On the law of the iterated logarithm, Ann. of Math. (2) 43 (1942), 419–436. MR 6630, DOI 10.2307/1968801
- W. Feller, The general form of the so-called law of the iterated logarithm, Trans. Amer. Math. Soc. 54 (1943), 373–402. MR 9263, DOI 10.1090/S0002-9947-1943-0009263-7
- W. Feller, The law of the iterated logarithm for identically distributed random variables, Ann. of Math. (2) 47 (1946), 631–638. MR 17894, DOI 10.2307/1969225
- J. Kuelbs, Sample path behavior for Brownian motion in Banach spaces, Ann. Probability 3 (1975), 247–261. MR 372937, DOI 10.1214/aop/1176996396
- V. M. Zolotarev, Concerning a certain probability problem, Theory Probab. Appl., 6 (1961), 201–204.
Additional Information
- Uwe Einmahl
- Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Email: ueinmahl@vub.be
- Received by editor(s): July 28, 2021
- Received by editor(s) in revised form: March 15, 2022
- Published electronically: July 13, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6575-6596
- MSC (2020): Primary 60F15
- DOI: https://doi.org/10.1090/tran/8728
- MathSciNet review: 4474901