Dirichlet and Neumann problems for elliptic equations with singular drifts on Lipschitz domains
HTML articles powered by AMS MathViewer
- by Hyunseok Kim and Hyunwoo Kwon PDF
- Trans. Amer. Math. Soc. 375 (2022), 6537-6574 Request permission
Abstract:
We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: \[ -\triangle u +\operatorname {div}(u\mathbf {b}) =f \quad \text { and }\quad -\triangle v -\mathbf {b} \cdot \nabla v =g \] in a bounded Lipschitz domain $\Omega$ in $\mathbb {R}^n$ $(n\geq 3)$, where $\mathbf {b}:\Omega \rightarrow \mathbb {R}^n$ is a given vector field. Under the assumption that $\mathbf {b} \in L^{n}(\Omega )^n$, we first establish existence and uniqueness of solutions in $L_{\alpha }^{p}(\Omega )$ for the Dirichlet and Neumann problems. Here $L_{\alpha }^{p}(\Omega )$ denotes the Sobolev space (or Bessel potential space) with the pair $(\alpha ,p)$ satisfying certain conditions. These results extend the classical works of Jerison-Kenig [J. Funct. Anal. 130 (1995), pp. 161–219] and Fabes-Mendez-Mitrea [J. Funct. Anal. 159 (1998), pp. 323–368] for the Poisson equation. We also prove existence and uniqueness of solutions of the Dirichlet problem with boundary data in $L^{2}(\partial \Omega )$. Our results for the Dirichlet problems hold even for the case $n=2$.References
- Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
- Chérif Amrouche and M. Ángeles Rodríguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Ration. Mech. Anal. 199 (2011), no. 2, 597–651. MR 2763035, DOI 10.1007/s00205-010-0340-8
- Martin Berggren, Approximations of very weak solutions to boundary-value problems, SIAM J. Numer. Anal. 42 (2004), no. 2, 860–877. MR 2084239, DOI 10.1137/S0036142903382048
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829, DOI 10.1007/978-0-387-70914-7
- Hi Jun Choe and Hyunseok Kim, Dirichlet problem for the stationary Navier-Stokes system on Lipschitz domains, Comm. Partial Differential Equations 36 (2011), no. 11, 1919–1944. MR 2846167, DOI 10.1080/03605302.2011.613079
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- Björn E. J. Dahlberg, On the Poisson integral for Lipschitz and $C^{1}$-domains, Studia Math. 66 (1979), no. 1, 13–24. MR 562447, DOI 10.4064/sm-66-1-13-24
- Jérôme Droniou, Non-coercive linear elliptic problems, Potential Anal. 17 (2002), no. 2, 181–203. MR 1908676, DOI 10.1023/A:1015709329011
- Jérôme Droniou and Juan-Luis Vázquez, Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations 34 (2009), no. 4, 413–434. MR 2476418, DOI 10.1007/s00526-008-0189-y
- Eugene Fabes, Osvaldo Mendez, and Marius Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal. 159 (1998), no. 2, 323–368. MR 1658089, DOI 10.1006/jfan.1998.3316
- N. Filonov, On the regularity of solutions to the equation $-\Delta u+b\cdot \nabla u=0$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 410 (2013), no. Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 43, 168–186, 189 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 195 (2013), no. 1, 98–108. MR 3048265, DOI 10.1007/s10958-013-1566-4
- Nikolay Filonov and Timofey Shilkin, On some properties of weak solutions to elliptic equations with divergence-free drifts, Mathematical analysis in fluid mechanics—selected recent results, Contemp. Math., vol. 710, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 105–120. MR 3818670, DOI 10.1090/conm/710/14366
- Claus Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four, Math. Z. 165 (1979), no. 2, 193–197. MR 520820, DOI 10.1007/BF01182469
- Loukas Grafakos, Modern Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2014. MR 3243741, DOI 10.1007/978-1-4939-1230-8
- David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219. MR 1331981, DOI 10.1006/jfan.1995.1067
- A. Jonsson, The trace of potentials on general sets, Ark. Mat. 17 (1979), no. 1, 1–18. MR 543499, DOI 10.1007/BF02385453
- Alf Jonsson and Hans Wallin, Function spaces on subsets of $\textbf {R}^n$, Math. Rep. 2 (1984), no. 1, xiv+221. MR 820626
- Byungsoo Kang and Hyunseok Kim, $W^{1,p}$-estimates for elliptic equations with lower order terms, Commun. Pure Appl. Anal. 16 (2017), no. 3, 799–821. MR 3623550, DOI 10.3934/cpaa.2017038
- Doyoon Kim, Seungjin Ryu, and Kwan Woo, Parabolic equations with unbounded lower-order coefficients in Sobolev spaces with mixed norms, J. Evol. Equ. 22 (2022), no. 1, Paper No. 9, 40. MR 4387945, DOI 10.1007/s00028-022-00761-2
- Hyunseok Kim, Existence and regularity of very weak solutions of the stationary Navier-Stokes equations, Arch. Ration. Mech. Anal. 193 (2009), no. 1, 117–152. MR 2506072, DOI 10.1007/s00205-008-0168-7
- Hyunseok Kim and Young-Heon Kim, On weak solutions of elliptic equations with singular drifts, SIAM J. Math. Anal. 47 (2015), no. 2, 1271–1290. MR 3328143, DOI 10.1137/14096270X
- N. V. Krylov, Elliptic equations with VMO $a, b\in L_d$, and $c\in L_{d/2}$, Trans. Amer. Math. Soc. 374 (2021), no. 4, 2805–2822. MR 4223034, DOI 10.1090/tran/8282
- N. V. Krylov, On stochastic equations with drift in $L_d$, Ann. Probab. 49 (2021), no. 5, 2371–2398. MR 4317707, DOI 10.1214/21-aop1510
- H. Kwon, Elliptic equations in divergence form with drifts in ${L}^2$, to appear in Proc. Amer. Math. Soc., arXiv:2104.01300.
- S. May, R. Rannacher, and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM J. Control Optim. 51 (2013), no. 3, 2585–2611. MR 3070527, DOI 10.1137/080735734
- Dorina Mitrea, Layer potentials and Hodge decompositions in two dimensional Lipschitz domains, Math. Ann. 322 (2002), no. 1, 75–101. MR 1883390, DOI 10.1007/s002080100266
- Marius Mitrea and Michael Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem, J. Funct. Anal. 176 (2000), no. 1, 1–79. MR 1781631, DOI 10.1006/jfan.2000.3619
- A. I. Nazarov and N. N. Ural′tseva, The Harnack inequality and related properties of solutions of elliptic and parabolic equations with divergence-free lower-order coefficients, Algebra i Analiz 23 (2011), no. 1, 136–168 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 23 (2012), no. 1, 93–115. MR 2760150, DOI 10.1090/S1061-0022-2011-01188-4
- M. V. Safonov, Non-divergence elliptic equations of second order with unbounded drift, Nonlinear partial differential equations and related topics, Amer. Math. Soc. Transl. Ser. 2, vol. 229, Amer. Math. Soc., Providence, RI, 2010, pp. 211–232. MR 2667641, DOI 10.1090/trans2/229/13
- Georgios Sakellaris, Boundary value problems in Lipschitz domains for equations with lower order coefficients, Trans. Amer. Math. Soc. 372 (2019), no. 8, 5947–5989. MR 4014299, DOI 10.1090/tran/7895
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Hans Triebel, Theory of function spaces. III, Monographs in Mathematics, vol. 100, Birkhäuser Verlag, Basel, 2006. MR 2250142
- Neil S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 265–308. MR 369884
- Gregory Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572–611. MR 769382, DOI 10.1016/0022-1236(84)90066-1
Additional Information
- Hyunseok Kim
- Affiliation: Department of Mathematics, Sogang Univeristy, 35, Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
- MR Author ID: 609700
- Email: kimh@sogang.ac.kr
- Hyunwoo Kwon
- Affiliation: Department of Mathematics, Sogang Univeristy, 35, Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
- Address at time of publication: Department of Mathematics, Republic of Korea Air Force Academy, Postbox 335-2, 635, Danjae-ro Sangdang-gu, Cheongju-si Chungcheongbuk-do, Republic of Korea
- MR Author ID: 1430021
- ORCID: 0000-0002-7199-3631
- Email: willkwon@afa.ac.kr, willkwon@sogang.ac.kr
- Received by editor(s): November 24, 2020
- Received by editor(s) in revised form: October 24, 2021, and March 7, 2022
- Published electronically: July 13, 2022
- Additional Notes: The researh of this work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2016R1D1A1B02015245)
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6537-6574
- MSC (2020): Primary 35J15, 35J25
- DOI: https://doi.org/10.1090/tran/8730
- MathSciNet review: 4474900