Integral points on the congruent number curve
HTML articles powered by AMS MathViewer
- by Stephanie Chan PDF
- Trans. Amer. Math. Soc. 375 (2022), 6675-6700 Request permission
Abstract:
We study integral points on the quadratic twists $\mathcal {E}_D:y^2=x^3-D^2x$ of the congruent number curve. We give upper bounds on the number of integral points in each coset of $2\mathcal {E}_D(\mathbb {Q})$ in $\mathcal {E}_D(\mathbb {Q})$ and show that their total is $\ll (3.8)^{\operatorname {rank} \mathcal {E}_D(\mathbb {Q})}$. We further show that the average number of non-torsion integral points in this family is bounded above by $2$. As an application we also deduce from our upper bounds that the system of simultaneous Pell equations $aX^2-bY^2=d,\ bY^2-cZ^2=d$ for pairwise coprime positive integers $a,b,c,d$, has at most $\ll (3.6)^{\omega (abcd)}$ integer solutions.References
- L. Alpoge, The average number of integral points on elliptic curves is bounded, arXiv:1412.1047 [math.NT], 2014.
- Alan Baker, Transcendental number theory, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. MR 1074572
- Michael A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173ā199. MR 1629862, DOI 10.1515/crll.1998.049
- Michael A. Bennett, On consecutive integers of the form $ax^2,\ by^2$ and $cz^2$, Acta Arith. 88 (1999), no.Ā 4, 363ā370. MR 1690456, DOI 10.4064/aa-88-4-363-370
- Michael A. Bennett and Gary Walsh, The Diophantine equation $b^2X^4-dY^2=1$, Proc. Amer. Math. Soc. 127 (1999), no.Ā 12, 3481ā3491. MR 1625772, DOI 10.1090/S0002-9939-99-05041-8
- B. J. Birch and N. M. Stephens, The parity of the rank of the Mordell-Weil group, Topology 5 (1966), 295ā299. MR 201379, DOI 10.1016/0040-9383(66)90021-8
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- Ć. Bombā²eri and U. Zannā²e, On the number of rational points on certain elliptic curves, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no.Ā 3, 5ā14 (Russian, with Russian summary); English transl., Izv. Math. 68 (2004), no.Ā 3, 437ā445. MR 2069191, DOI 10.1070/IM2004v068n03ABEH000483
- A. Bremner, J. H. Silverman, and N. Tzanakis, Integral points in arithmetic progression on $y^2=x(x^2-n^2)$, J. Number Theory 80 (2000), no.Ā 2, 187ā208. MR 1740510, DOI 10.1006/jnth.1999.2430
- Yann Bugeaud, Claude Levesque, and Michel Waldschmidt, Ćquations de FermatāPellāMahler simultanĆ©es, Publ. Math. Debrecen 79 (2011), no.Ā 3-4, 357ā366 (French, with English and French summaries). MR 2907971, DOI 10.5486/PMD.2011.5192
- J. W. S. Cassels, Arithmetic on curves of genus $1$. III. The Tate-Å afareviÄ and Selmer groups, Proc. London Math. Soc. (3) 12 (1962), 259ā296. MR 163913, DOI 10.1112/plms/s3-12.1.259
- J. W. S. Cassels, Arithmetic on curves of genus $1$. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95ā112. MR 163915, DOI 10.1515/crll.1962.211.95
- Wen-Chen Chi, King Fai Lai, and Ki-Seng Tan, Integer points on elliptic curves, Pacific J. Math. 222 (2005), no.Ā 2, 237ā252. MR 2225071, DOI 10.2140/pjm.2005.222.237
- Henry Cohn and Yufei Zhao, Sphere packing bounds via spherical codes, Duke Math. J. 163 (2014), no.Ā 10, 1965ā2002. MR 3229046, DOI 10.1215/00127094-2738857
- J. H. E. Cohn, The Diophantine equation $x^4-Dy^2=1$. II, Acta Arith. 78 (1997), no.Ā 4, 401ā403. MR 1438594, DOI 10.4064/aa-78-4-401-403
- Pietro Corvaja and Umberto Zannier, On the number of integral points on algebraic curves, J. Reine Angew. Math. 565 (2003), 27ā42. MR 2024644, DOI 10.1515/crll.2003.103
- Robert Gross and Joseph Silverman, $S$-integer points on elliptic curves, Pacific J. Math. 167 (1995), no.Ā 2, 263ā288. MR 1328329, DOI 10.2140/pjm.1995.167.263
- D. R. Heath-Brown, The size of Selmer groups for the congruent number problem. II, Invent. Math. 118 (1994), no.Ā 2, 331ā370. With an appendix by P. Monsky. MR 1292115, DOI 10.1007/BF01231536
- H. A. Helfgott and A. Venkatesh, Integral points on elliptic curves and 3-torsion in class groups, J. Amer. Math. Soc. 19 (2006), no.Ā 3, 527ā550. MR 2220098, DOI 10.1090/S0894-0347-06-00515-7
- M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), no.Ā 2, 419ā450. MR 948108, DOI 10.1007/BF01394340
- G. A. KabatjanskiÄ and V. I. LevenÅ”teÄn, Bounds for packings on the sphere and in space, Problemy PeredaÄi Informacii 14 (1978), no.Ā 1, 3ā25 (Russian). MR 0514023
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817, DOI 10.1007/978-3-662-07010-9
- Pierre Le Boudec, Linear growth for certain elliptic fibrations, Int. Math. Res. Not. IMRN 21 (2015), 10859ā10871. MR 3456030, DOI 10.1093/imrn/rnu251
- Wilhelm Ljunggren, Ćber die Gleichung $x^4-Dy^2=1$, Arch. Math. Naturvid. 45 (1942), no.Ā 5, 61ā70 (German). MR 12619
- K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 257ā262. MR 166188, DOI 10.1307/mmj/1028999140
- R. A. Rankin, The closest packing of spherical caps in $n$ dimensions, Proc. Glasgow Math. Assoc. 2 (1955), 139ā144. MR 74013, DOI 10.1017/S2040618500033219
- Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911, DOI 10.1007/978-1-4684-0255-1
- Claude E. Shannon, Probability of error for optimal codes in a Gaussian channel, Bell System Tech. J. 38 (1959), 611ā656. MR 103137, DOI 10.1002/j.1538-7305.1959.tb03905.x
- Carl L. Siegel, Ćber einige Anwendungen diophantischer Approximationen [reprint of Abhandlungen der PreuĆischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1], On some applications of Diophantine approximations, Quad./Monogr., vol. 2, Ed. Norm., Pisa, 2014, pp.Ā 81ā138 (German). MR 3330350
- Joseph H. Silverman, Lower bound for the canonical height on elliptic curves, Duke Math. J. 48 (1981), no.Ā 3, 633ā648. MR 630588
- Joseph H. Silverman, Lower bounds for height functions, Duke Math. J. 51 (1984), no.Ā 2, 395ā403. MR 747871, DOI 10.1215/S0012-7094-84-05118-4
- Joseph H. Silverman, A quantitative version of Siegelās theorem: integral points on elliptic curves and Catalan curves, J. Reine Angew. Math. 378 (1987), 60ā100. MR 895285, DOI 10.1515/crll.1987.378.60
- Joseph H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), no.Ā 183, 339ā358. MR 942161, DOI 10.1090/S0025-5718-1988-0942161-4
- Joseph H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), no.Ā 192, 723ā743. MR 1035944, DOI 10.1090/S0025-5718-1990-1035944-5
- A. Smith, $2^\infty$-Selmer groups, $2^\infty$-class groups, and Goldfeldās conjecture, arXiv:1702.02325 [math.NT], 2017.
- Katherine E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials, Canad. J. Math. 68 (2016), no.Ā 5, 1120ā1158. MR 3536930, DOI 10.4153/CJM-2015-005-0
Additional Information
- Stephanie Chan
- Affiliation: Department of Mathematics, University College London, Gower Street, London WC1EĀ 6BT, United Kingdom
- MR Author ID: 1290957
- ORCID: 0000-0001-8467-4106
- Email: ytchan@umich.edu
- Received by editor(s): May 18, 2021
- Received by editor(s) in revised form: April 7, 2022
- Published electronically: July 13, 2022
- Additional Notes: The author was supported by the European Research Council grant agreement No. 670239
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6675-6700
- MSC (2020): Primary 11D45; Secondary 11G05, 11D25
- DOI: https://doi.org/10.1090/tran/8732
- MathSciNet review: 4474905