Polar exploration of complex surface germs
HTML articles powered by AMS MathViewer
- by André Belotto da Silva, Lorenzo Fantini, András Némethi and Anne Pichon PDF
- Trans. Amer. Math. Soc. 375 (2022), 6747-6767
Abstract:
We prove that the topological type of a normal surface singularity $(X,0)$ provides finite bounds for the multiplicity and polar multiplicity of $(X,0)$, as well as for the combinatorics of the families of generic hyperplane sections and of polar curves of the generic plane projections of $(X,0)$. A key ingredient in our proof is a topological bound of the growth of the Mather discrepancies of $(X,0)$, which allows us to bound the number of point blowups necessary to achieve factorization of any resolution of $(X,0)$ through its Nash transform. This fits in the program of polar explorations, the quest to determine the generic polar variety of a singular surface germ, to which the final part of the paper is devoted.References
- Michael Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136. MR 199191, DOI 10.2307/2373050
- André Belotto da Silva, Edward Bierstone, Vincent Grandjean, and Pierre D. Milman, Resolution of singularities of the cotangent sheaf of a singular variety, Adv. Math. 307 (2017), 780–832. MR 3590532, DOI 10.1016/j.aim.2016.11.021
- André Belotto da Silva, Lorenzo Fantini, and Anne Pichon, On Lipschitz normally embedded complex surface germs, Compos. Math. 158 (2022), no. 3, 623–653. MR 4433083, DOI 10.1112/S0010437X22007357
- André Belotto da Silva, Lorenzo Fantini, and Anne Pichon, Inner geometry of complex surfaces: a valuative approach, Geom. Topol. 26 (2022), no. 1, 163–219. MR 4404877, DOI 10.2140/gt.2022.26.163
- Lev Birbrair, Walter D. Neumann, and Anne Pichon, The thick-thin decomposition and the bilipschitz classification of normal surface singularities, Acta Math. 212 (2014), no. 2, 199–256. MR 3207758, DOI 10.1007/s11511-014-0111-8
- Romain Bondil, Fine polar invariants of minimal singularities of surfaces, J. Singul. 14 (2016), 91–112. MR 3540837, DOI 10.5427/jsing.2016.14f
- Clément Caubel, András Némethi, and Patrick Popescu-Pampu, Milnor open books and Milnor fillable contact 3-manifolds, Topology 45 (2006), no. 3, 673–689. MR 2218761, DOI 10.1016/j.top.2006.01.002
- Tommaso de Fernex and Roi Docampo, Jacobian discrepancies and rational singularities, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 165–199. MR 3141731, DOI 10.4171/JEMS/430
- Tommaso de Fernex, Lawrence Ein, and Shihoko Ishii, Divisorial valuations via arcs, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 425–448. MR 2426354, DOI 10.2977/prims/1210167333
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Alexander Grothendieck. Techniques de construction en géométrie analytique. vii. étude locale des morphismes: éléments de calcul infinitésimal. Séminaire Henri Cartan, 13(2):1–27, 1960.
- Shihoko Ishii and Ana J. Reguera, Singularities with the highest Mather minimal log discrepancy, Math. Z. 275 (2013), no. 3-4, 1255–1274. MR 3127058, DOI 10.1007/s00209-013-1181-6
- Henry B. Laufer, Normal two-dimensional singularities, Annals of Mathematics Studies, No. 71, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0320365
- Henry B. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597–608. MR 330500, DOI 10.2307/2374639
- Henry B. Laufer, Weak simultaneous resolution for deformations of Gorenstein surface singularities, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, R.I., 1983, pp. 1–29. MR 713236
- Dũng Tráng Lê, Geometry of complex surface singularities, Singularities—Sapporo 1998, Adv. Stud. Pure Math., vol. 29, Kinokuniya, Tokyo, 2000, pp. 163–180. MR 1819635, DOI 10.2969/aspm/02910163
- Lê Dũng Tráng and Bernard Teissier, Variétés polaires locales et classes de Chern des variétés singulières, Ann. of Math. (2) 114 (1981), no. 3, 457–491 (French). MR 634426, DOI 10.2307/1971299
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- H. Maugendre and F. Michel, On the growth behaviour of Hironaka quotients, J. Singul. 20 (2020), 31–53. MR 4066295, DOI 10.5427/jsing.2020.20b
- A. Némethi, Five lectures on normal surface singularities, Low dimensional topology (Eger, 1996/Budapest, 1998) Bolyai Soc. Math. Stud., vol. 8, János Bolyai Math. Soc., Budapest, 1999, pp. 269–351. With the assistance of Ágnes Szilárd and Sándor Kovács. MR 1747271
- Walter D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), no. 2, 299–344. MR 632532, DOI 10.1090/S0002-9947-1981-0632532-8
- Walter D. Neumann and Anne Pichon, Complex analytic realization of links, Intelligence of low dimensional topology 2006, Ser. Knots Everything, vol. 40, World Sci. Publ., Hackensack, NJ, 2007, pp. 231–238. MR 2371730, DOI 10.1142/9789812770967_{0}029
- Anne Pichon, Fibrations sur le cercle et surfaces complexes, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 2, 337–374 (French, with English summary). MR 1824957, DOI 10.5802/aif.1825
- Mark Spivakovsky, Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. of Math. (2) 131 (1990), no. 3, 411–491. MR 1053487, DOI 10.2307/1971467
- Philip Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454. MR 291170, DOI 10.2307/2373333
- Oscar Zariski, The reduction of the singularities of an algebraic surface, Ann. of Math. (2) 40 (1939), 639–689. MR 159, DOI 10.2307/1968949
Additional Information
- André Belotto da Silva
- Affiliation: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
- Address at time of publication: Université Paris Cité, Institut de Mathématiques de Jussieu Paris Rive Gauche, CNRS 7586, Bât. Sophie Germain, Place Aurélie Nemours, 75013 Paris, France
- Email: andre.belotto@imj-prg.fr
- Lorenzo Fantini
- Affiliation: Centre de Mathématiques Laurent Schwartz, École Polytechnique, CNRS, Palaiseau, France
- MR Author ID: 1077777
- Email: lorenzo.fantini@polytechnique.edu
- András Némethi
- Affiliation: Alfréd Rényi Institute of Mathematics, ELKH, Reáltanoda utca 13-15, H-1053, Budapest, Hungary; Dept. of Geometry, ELTE - University of Budapest, Budapest, Hungary; and BCAM - Basque Center for Applied Math., Mazarredo, 14 E48009 Bilbao, Basque Country, Spain
- Email: nemethi.andras@renyi.hu
- Anne Pichon
- Affiliation: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
- MR Author ID: 617466
- Email: anne.pichon@univ-amu.fr
- Received by editor(s): July 21, 2021
- Received by editor(s) in revised form: May 12, 2022, and May 13, 2022
- Published electronically: July 13, 2022
- Additional Notes: This work was partially supported by the project Lipschitz geometry of singularities (LISA) of the Agence Nationale de la Recherche (project ANR-17-CE40-0023). The second author was partially supported by a Research Fellowship of the Alexander von Humboldt Foundation, while the third author was partially supported by the NKFIH Grant “Élvonal (Frontier)” KKP 126683.
- © Copyright 2022 by the authors
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6747-6767
- MSC (2020): Primary 32S25, 32S45; Secondary 14B05, 14E15
- DOI: https://doi.org/10.1090/tran/8749
- MathSciNet review: 4474907