The special values of the standard $L$-functions for $\operatorname {GSp}_{2n} \times \operatorname {GL}_1$
HTML articles powered by AMS MathViewer
- by Shuji Horinaga, Ameya Pitale, Abhishek Saha and Ralf Schmidt PDF
- Trans. Amer. Math. Soc. 375 (2022), 6947-6982 Request permission
Abstract:
We prove the expected algebraicity property for the critical values of character twists of the standard $L$-function associated to vector-valued holomorphic Siegel cusp forms of archimedean type $(k_1$, $k_2$, …, $k_n)$, where $k_n \ge n+1$ and all $k_i$ are of the same parity. For the proof, we use an explicit integral representation to reduce to arithmetic properties of differential operators on vector-valued nearly holomorphic Siegel cusp forms. We establish these properties via a representation-theoretic approach.References
- Mahdi Asgari and Ralf Schmidt, Siegel modular forms and representations, Manuscripta Math. 104 (2001), no. 2, 173–200. MR 1821182, DOI 10.1007/PL00005869
- Don Blasius, Michael Harris, and Dinakar Ramakrishnan, Coherent cohomology, limits of discrete series, and Galois conjugation, Duke Math. J. 73 (1994), no. 3, 647–685. MR 1262930, DOI 10.1215/S0012-7094-94-07326-2
- Siegfried Böcherer, Über die Funktionalgleichung automorpher $L$-Funktionen zur Siegelschen Modulgruppe, J. Reine Angew. Math. 362 (1985), 146–168 (German). MR 809972, DOI 10.1515/crll.1985.362.146
- Siegfried Böcherer, Takakazu Satoh, and Tadashi Yamazaki, On the pullback of a differential operator and its application to vector valued Eisenstein series, Comment. Math. Univ. St. Paul. 41 (1992), no. 1, 1–22. MR 1166221
- S. Böcherer and C.-G. Schmidt, $p$-adic measures attached to Siegel modular forms, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 5, 1375–1443 (English, with English and French summaries). MR 1800123, DOI 10.5802/aif.1796
- A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR 546598
- Thanasis Bouganis, On special $L$-values attached to Siegel modular forms, Iwasawa theory 2012, Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg, 2014, pp. 135–176. MR 3586812
- Yuanqing Cai, Solomon Friedberg, and Eyal Kaplan, Doubling constructions: local and global theory, with an application to global functoriality for non-generic cuspidal representations, Preprint, 2018. arXiv:1802.02637.
- P. Deligne, Valeurs de fonctions $L$ et périodes d’intégrales, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 313–346 (French). With an appendix by N. Koblitz and A. Ogus. MR 546622
- Eberhard Freitag, Ein Verschwindungssatz für automorphe Formen zur Siegelschen Modulgruppe, Math. Z. 165 (1979), no. 1, 11–18 (German). MR 521517, DOI 10.1007/BF01175126
- Toby Gee and Olivier Taïbi, Arthur’s multiplicity formula for $\textbf {GSp}_4$ and restriction to $\textbf {Sp}_4$, J. Éc. polytech. Math. 6 (2019), 469–535 (English, with English and French summaries). MR 3991897, DOI 10.5802/jep.99
- S. S. Gelbart and A. W. Knapp, $L$-indistinguishability and $R$ groups for the special linear group, Adv. in Math. 43 (1982), no. 2, 101–121. MR 644669, DOI 10.1016/0001-8708(82)90030-5
- Michael Harris, Special values of zeta functions attached to Siegel modular forms, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 1, 77–120. MR 618732, DOI 10.24033/asens.1398
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- Tomoyoshi Ibukiyama, On differential operators on automorphic forms and invariant pluri-harmonic polynomials, Comment. Math. Univ. St. Paul. 48 (1999), no. 1, 103–118. MR 1684769
- Noritomo Kozima, On special values of standard $L$-functions attached to vector valued Siegel modular forms, Kodai Math. J. 23 (2000), no. 2, 255–265. MR 1768185, DOI 10.2996/kmj/1138044215
- Zheng Liu, The doubling archimedean zeta integrals for $p$-adic interpolation, Math. Res. Lett. 28 (2021), no. 1, 145–173. MR 4247999, DOI 10.4310/MRL.2021.v28.n1.a7
- Zheng Liu, $p$-adic $L$-functions for ordinary families on symplectic groups, J. Inst. Math. Jussieu 19 (2020), no. 4, 1287–1347. MR 4120810, DOI 10.1017/s1474748018000415
- Ju. I. Manin, Periods of cusp forms, and $p$-adic Hecke series, Mat. Sb. (N.S.) 92(134) (1973), 378–401, 503 (Russian). MR 0345909
- Kathrin Maurischat, Casimir operators for symplectic groups, Int. J. Number Theory 8 (2012), no. 4, 923–932. MR 2926552, DOI 10.1142/S1793042112500546
- Shin-ichiro Mizumoto, Poles and residues of standard $L$-functions attached to Siegel modular forms, Math. Ann. 289 (1991), no. 4, 589–612. MR 1103038, DOI 10.1007/BF01446591
- Ameya Pitale, Abhishek Saha, and Ralf Schmidt, Integrality and cuspidality of pullbacks of nearly holomorphic Siegel Eisenstein series, Publicacions Matematiques.
- Ameya Pitale, Abhishek Saha, and Ralf Schmidt, A note on the growth of nearly holomorphic vector-valued Siegel modular forms, L-functions and automorphic forms, Contrib. Math. Comput. Sci., vol. 10, Springer, Cham, 2017, pp. 185–193. MR 3931455
- Ameya Pitale, Abhishek Saha, and Ralf Schmidt, On the standard $L$-function for $\mathrm {GSp}_{2n}\times \mathrm {GL}_1$ and algebraicity of symmetric fourth $L$-values for $\mathrm {GL}_2$, Ann. Math. Qué. 45 (2021), no. 1, 113–159 (English, with English and French summaries). MR 4229179, DOI 10.1007/s40316-020-00134-6
- Ameya Pitale, Abhishek Saha, and Ralf Schmidt. Lowest weight modules of $\operatorname {Sp}_4(\mathbb {R})$ and nearly holomorphic Siegel modular forms. Kyoto. J. Math., to appear.
- Abhishek Saha, On ratios of Petersson norms for Yoshida lifts, Forum Math. 27 (2015), no. 4, 2361–2412. MR 3365801, DOI 10.1515/forum-2013-0093
- Goro Shimura, On some arithmetic properties of modular forms of one and several variables, Ann. of Math. (2) 102 (1975), no. 3, 491–515. MR 491519, DOI 10.2307/1971041
- Goro Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), no. 6, 783–804. MR 434962, DOI 10.1002/cpa.3160290618
- Goro Shimura, On the periods of modular forms, Math. Ann. 229 (1977), no. 3, 211–221. MR 463119, DOI 10.1007/BF01391466
- Goro Shimura, Invariant differential operators on Hermitian symmetric spaces, Ann. of Math. (2) 132 (1990), no. 2, 237–272. MR 1070598, DOI 10.2307/1971523
- Goro Shimura, Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82, American Mathematical Society, Providence, RI, 2000. MR 1780262, DOI 10.1090/surv/082
- Jacob Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J. 48 (1981), no. 2, 327–350. MR 620253
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Additional Information
- Shuji Horinaga
- Affiliation: Department of Mathematics, Tokyo University of Science, Tokyo, Japan
- MR Author ID: 1324972
- Ameya Pitale
- Affiliation: Department of Mathematics, University of Oklahoma, Norma, Oklahoma
- MR Author ID: 778555
- Abhishek Saha
- Affiliation: School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
- MR Author ID: 855679
- Ralf Schmidt
- Affiliation: Department of Mathematics, University of North Texas, Denton, Texas
- MR Author ID: 636524
- Received by editor(s): February 5, 2021
- Received by editor(s) in revised form: September 14, 2021, and November 22, 2021
- Published electronically: July 29, 2022
- Additional Notes: The third author acknowledges the support of the Leverhulme Trust Research Project Grant RPG-2018-401
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6947-6982
- MSC (2020): Primary 11F46, 11F67; Secondary 11F70
- DOI: https://doi.org/10.1090/tran/8617