Residual equidistribution of modular symbols and cohomology classes for quotients of hyperbolic $n$-space
HTML articles powered by AMS MathViewer
- by Petru Constantinescu and Asbjørn Christian Nordentoft PDF
- Trans. Amer. Math. Soc. 375 (2022), 7001-7034 Request permission
Abstract:
We provide a new and simple automorphic method using Eisenstein series to study the equidistribution of modular symbols modulo primes, which we apply to prove an average version of a conjecture of Mazur and Rubin. More precisely, we prove that modular symbols corresponding to a Hecke basis of weight 2 cusp forms are asymptotically jointly equidistributed mod $p$ while we allow restrictions on the location of the cusps. As an application, we obtain a residual equidistribution result for Dedekind sums. Furthermore, we calculate the variance of the distribution and show a surprising bias with connections to perturbation theory. Additionally, we prove the full conjecture in some particular cases using a connection to Eisenstein congruences. Finally, our methods generalise to equidistribution results for cohomology classes of finite volume quotients of $n$-dimensional hyperbolic space.References
- Lars V. Ahlfors, Möbius transformations in $\textbf {R}^n$ expressed through $2\times 2$ matrices of Clifford numbers, Complex Variables Theory Appl. 5 (1986), no. 2-4, 215–224. MR 846490, DOI 10.1080/17476938608814142
- Nicolas Bergeron and Akshay Venkatesh, The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12 (2013), no. 2, 391–447. MR 3028790, DOI 10.1017/S1474748012000667
- S. Bettin and S. Drappeau, Limit laws for rational continued fractions and value distribution of quantum modular forms, Preprint, arXiv:1903.00457, 2019.
- V. Blomer, É. Fouvry, E. Kowalski, P. Michel, D. Milićević, and W. Sawin, The second moment theory of families of L-functions, Preprint, arXiv:1804.01450, 2018.
- Roelof W. Bruggeman, On the distribution of Dedekind sums, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 197–210. MR 1284062, DOI 10.1090/conm/166/01626
- Frank Calegari and Matthew Emerton, Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms, Ann. of Math. (2) 170 (2009), no. 3, 1437–1446. MR 2600878, DOI 10.4007/annals.2009.170.1437
- Frank Calegari and Akshay Venkatesh, A torsion Jacquet-Langlands correspondence, Astérisque 409 (2019), x+226 (English, with English and French summaries). MR 3961523, DOI 10.24033/ast
- P. Cohen and P. Sarnak, Selberg trace formula, chapters 6 and 7, http://publications.ias.edu/sarnak/section/513, 1980.
- Yves Colin de Verdière, Pseudo-laplaciens. II, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 87–113 (French). MR 699488, DOI 10.5802/aif.917
- Petru Constantinescu, Distribution of modular symbols in $\Bbb {H}^3$, Int. Math. Res. Not. IMRN 7 (2022), 5425–5465. MR 4403966, DOI 10.1093/imrn/rnaa241
- J. E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997. MR 1628193
- Nikolaos Diamantis, Jeffrey Hoffstein, Eren Mehmet Kıral, and Min Lee, Additive twists and a conjecture by Mazur, Rubin and Stein, J. Number Theory 209 (2020), 1–36. MR 4053058, DOI 10.1016/j.jnt.2019.11.016
- J. Elstrodt, F. Grunewald, and J. Mennicke, Vahlen’s group of Clifford matrices and spin-groups, Math. Z. 196 (1987), no. 3, 369–390. MR 913663, DOI 10.1007/BF01200359
- J. Elstrodt, F. Grunewald, and J. Mennicke, Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces, Invent. Math. 101 (1990), no. 3, 641–685. MR 1062799, DOI 10.1007/BF01231519
- J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315, DOI 10.1007/978-3-662-03626-6
- Charles L. Epstein, Asymptotics for closed geodesics in a homology class, the finite volume case, Duke Math. J. 55 (1987), no. 4, 717–757. MR 916117, DOI 10.1215/S0012-7094-87-05536-0
- Kurt Girstmair, On the distribution of Dedekind sums, Surv. Math. Appl. 13 (2018), 251–263. MR 3892256
- G. Harder, On the cohomology of discrete arithmetically defined groups, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 129–160. MR 0425018
- Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691, DOI 10.1090/gsm/053
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Steffen Kionke and Joachim Schwermer, On the growth of the first Betti number of arithmetic hyperbolic 3-manifolds, Groups Geom. Dyn. 9 (2015), no. 2, 531–565. MR 3356975, DOI 10.4171/GGD/320
- J. Lee and H-S. Sun, Dynamics of continued fractions and distribution of modular symbols, Preprint, arXiv:1902.06277, 2019.
- Alexander Lubotzky, Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996), no. 1-2, 71–82. MR 1390750, DOI 10.1007/BF02587736
- Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66 (Russian). MR 0314846
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287, DOI 10.1007/BF02684339
- B. Mazur, On the arithmetic of special values of $L$ functions, Invent. Math. 55 (1979), no. 3, 207–240. MR 553997, DOI 10.1007/BF01406841
- B. Mazur and K. Rubin, Relatively few rational points. Number Theory Seminar at Cal Tech, (2016).
- B. Mazur and K. Rubin, Arithmetic conjectures suggested by the statistical behavior of modular symbols, Exp. Math. (2021), 1–16.
- Loïc Merel, L’accouplement de Weil entre le sous-groupe de Shimura et le sous-groupe cuspidal de $J_0(p)$, J. Reine Angew. Math. 477 (1996), 71–115 (French). MR 1405312, DOI 10.1515/crll.1996.477.71
- John J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2) 104 (1976), no. 2, 235–247. MR 422501, DOI 10.2307/1971046
- Asbjørn Christian Nordentoft, Central values of additive twists of cuspidal $L$-functions, J. Reine Angew. Math. 776 (2021), 255–293. MR 4279108, DOI 10.1515/crelle-2021-0013
- Y. N. Petridis and M. S. Risager, Modular symbols have a normal distribution, Geom. Funct. Anal. 14 (2004), no. 5, 1013–1043. MR 2105951, DOI 10.1007/s00039-004-0481-8
- Yiannis N. Petridis and Morten S. Risager, Arithmetic statistics of modular symbols, Invent. Math. 212 (2018), no. 3, 997–1053. MR 3802302, DOI 10.1007/s00222-017-0784-7
- R. Phillips and P. Sarnak, The spectrum of Fermat curves, Geom. Funct. Anal. 1 (1991), no. 1, 80–146. MR 1091611, DOI 10.1007/BF01895418
- J. Rohlfs, On the cuspidal cohomology of the Bianchi modular groups, Math. Z. 188 (1985), no. 2, 253–269. MR 772354, DOI 10.1007/BF01304213
- P. Sarnak, On cusp forms. II, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 237–250. MR 1159118
- Theodor Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann. 113 (1937), no. 1, 1–13 (German). MR 1513075, DOI 10.1007/BF01571618
- Peter Scholze, On torsion in the cohomology of locally symmetric varieties, Ann. of Math. (2) 182 (2015), no. 3, 945–1066. MR 3418533, DOI 10.4007/annals.2015.182.3.3
- Atle Selberg, Collected papers. I, Springer Collected Works in Mathematics, Springer, Heidelberg, 2014. With a foreword by K. Chandrasekharan; Reprint of the 1989 edition [ MR1117906]. MR 3287209
- Mehmet Haluk Şengün, On the integral cohomology of Bianchi groups, Exp. Math. 20 (2011), no. 4, 487–505. MR 2859903, DOI 10.1080/10586458.2011.594671
- Mehmet Haluk Şengün, Arithmetic aspects of Bianchi groups, Computations with modular forms, Contrib. Math. Comput. Sci., vol. 6, Springer, Cham, 2014, pp. 279–315. MR 3381457, DOI 10.1007/978-3-319-03847-6_{1}1
- Mehmet Haluk Şengün and Seyfi Türkelli, Lower bounds on the dimension of the cohomology of Bianchi groups via Sczech cocycles, J. Théor. Nombres Bordeaux 28 (2016), no. 1, 237–260 (English, with English and French summaries). MR 3464620, DOI 10.5802/jtnb.937
- Goro Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3) 31 (1975), no. 1, 79–98. MR 382176, DOI 10.1112/plms/s3-31.1.79
- Takuro Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83–126. MR 389772, DOI 10.1017/S0027763000016706
- Anders Södergren, On the uniform equidistribution of closed horospheres in hyperbolic manifolds, Proc. Lond. Math. Soc. (3) 105 (2012), no. 2, 225–280. MR 2959926, DOI 10.1112/plms/pdr052
- Hae-Sang Sun, A proof of the conjecture of Mazur-Rubin-Stein, Bull. Korean Math. Soc. 58 (2021), no. 1, 163–170. MR 4206088, DOI 10.4134/BKMS.b200157
- Preston Wake and Carl Wang-Erickson, The rank of Mazur’s Eisenstein ideal, Duke Math. J. 169 (2020), no. 1, 31–115. MR 4047548, DOI 10.1215/00127094-2019-0039
- Gabor Wiese, Computational arithmetic of modular forms, Notes from the International Autumn School on Computational Number Theory, Tutor. Sch. Workshops Math. Sci., Birkhäuser/Springer, Cham, 2019, pp. 63–170. MR 3932019
- E. I. Zelenov, $p$-adic Gaussian random variables, Tr. Mat. Inst. Steklova 306 (2019), no. Matematicheskaya Fisika i Prilozheniya, 131–138 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 306 (2019), no. 1, 120–126. MR 4040770, DOI 10.4213/tm4000
Additional Information
- Petru Constantinescu
- Affiliation: Department of Mathematics, University College London, 25 Gordon Street, London, WC1H 0AY, United Kingdom
- Address at time of publication: Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
- ORCID: 0000-0002-2719-4592
- Email: petru.constantinescu.17@ucl.ac.uk
- Asbjørn Christian Nordentoft
- Affiliation: Mathematical Institute of the University of Bonn, Endenicher Allee 60, Bonn 53115, Germany
- Address at time of publication: LAGA, Institut Galilée, 99 avenue Jean Baptiste Clément, 93430 Villetaneuse, France
- MR Author ID: 1416007
- ORCID: 0000-0003-2998-7139
- Email: acnordentoft@outlook.com
- Received by editor(s): March 21, 2021
- Received by editor(s) in revised form: November 11, 2021, and January 10, 2022
- Published electronically: July 29, 2022
- Additional Notes: The first author was supported by the Engineering and Physical Sciences Research Council [EP/L015234/1], the EPSRC Centre for Doctoral Training in Geometry and Number Theory (The London School of Geometry and Number Theory), University College London. The second author was supported by the Independent Research Fund Denmark DFF-7014-00060B
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 7001-7034
- MSC (2020): Primary 11F67; Secondary 11M36, 11E45, 11E88
- DOI: https://doi.org/10.1090/tran/8646