## Subconvexity bounds for twisted $L$-functions, II

HTML articles powered by AMS MathViewer

- by Rizwanur Khan PDF
- Trans. Amer. Math. Soc.
**375**(2022), 6769-6796 Request permission

## Abstract:

We prove hybrid subconvexity bounds for twisted $L$-functions $L(s,f\times \chi )$ at the central point using a fourth moment estimate, including a new instance of the Burgess subconvexity bound.## References

- Nickolas Andersen and Eren Mehmet Kıral,
*Level reciprocity in the twisted second moment of Rankin-Selberg $L$-functions*, Mathematika**64**(2018), no. 3, 770–784. MR**3826486**, DOI 10.1112/s0025579318000256 - Valentin Blomer and Gergely Harcos,
*Hybrid bounds for twisted $L$-functions*, J. Reine Angew. Math.**621**(2008), 53–79. MR**2431250**, DOI 10.1515/CRELLE.2008.058 - Valentin Blomer, Gergely Harcos, and Philippe Michel,
*Bounds for modular $L$-functions in the level aspect*, Ann. Sci. École Norm. Sup. (4)**40**(2007), no. 5, 697–740 (English, with English and French summaries). MR**2382859**, DOI 10.1016/j.ansens.2007.05.003 - Valentin Blomer and Rizwanur Khan,
*Twisted moments of $L$-functions and spectral reciprocity*, Duke Math. J.**168**(2019), no. 6, 1109–1177. MR**3934595**, DOI 10.1215/00127094-2018-0060 - Valentin Blomer and Rizwanur Khan,
*Uniform subconvexity and symmetry breaking reciprocity*, J. Funct. Anal.**276**(2019), no. 7, 2315–2358. MR**3912807**, DOI 10.1016/j.jfa.2018.11.009 - Valentin Blomer, Xiaoqing Li, and Stephen D. Miller,
*A spectral reciprocity formula and non-vanishing for $L$-functions on $\textrm {GL}(4)\times \textrm {GL}(2)$*, J. Number Theory**205**(2019), 1–43. MR**3996341**, DOI 10.1016/j.jnt.2019.05.011 - Sary Drappeau,
*Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method*, Proc. Lond. Math. Soc. (3)**114**(2017), no. 4, 684–732. MR**3653244**, DOI 10.1112/plms.12022 - W. Duke, J. B. Friedlander, and H. Iwaniec,
*Bounds for automorphic $L$-functions. II*, Invent. Math.**115**(1994), no. 2, 219–239. MR**1258904**, DOI 10.1007/BF01231759 - I. S. Gradshteyn and I. M. Ryzhik,
*Table of integrals, series, and products*, 8th ed., Elsevier/Academic Press, Amsterdam, 2015. Translated from the Russian; Translation edited and with a preface by Daniel Zwillinger and Victor Moll; Revised from the seventh edition [MR2360010]. MR**3307944** - Jeffrey Hoffstein and Paul Lockhart,
*Coefficients of Maass forms and the Siegel zero*, Ann. of Math. (2)**140**(1994), no. 1, 161–181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. MR**1289494**, DOI 10.2307/2118543 - Peter Humphries and Rizwanur Khan,
*On the random wave conjecture for dihedral Maaßforms*, Geom. Funct. Anal.**30**(2020), no. 1, 34–125. MR**4081056**, DOI 10.1007/s00039-020-00526-4 - Henryk Iwaniec and Emmanuel Kowalski,
*Analytic number theory*, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR**2061214**, DOI 10.1090/coll/053 - H. Iwaniec, W. Luo, and P. Sarnak,
*Low lying zeros of families of $L$-functions*, Inst. Hautes Études Sci. Publ. Math. (2000), no. 91, 55–131. - H. Iwaniec and P. Michel,
*The second moment of the symmetric square $L$-functions*, Ann. Acad. Sci. Fenn. Math.**26**(2001), no. 2, 465–482. MR**1833252** - M. Jutila,
*Convolutions of Fourier coefficients of cusp forms*, Publ. Inst. Math. (Beograd) (N.S.)**65(79)**(1999), 31–51. MR**1717400** - Matti Jutila,
*The fourth moment of central values of Hecke series*, Number theory (Turku, 1999) de Gruyter, Berlin, 2001, pp. 167–177. MR**1822008** - Rizwanur Khan,
*Subconvexity bounds for twisted $L$-functions*, Q. J. Math.**72**(2021), no. 3, 1133–1145. MR**4310312**, DOI 10.1093/qmath/haaa069 - Henry H. Kim,
*Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$*, J. Amer. Math. Soc.**16**(2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR**1937203**, DOI 10.1090/S0894-0347-02-00410-1 - Eren Mehmet Kıral and Matthew Young,
*The fifth moment of modular $L$-functions*, J. Eur. Math. Soc. (JEMS)**23**(2021), no. 1, 237–314. MR**4186468**, DOI 10.4171/jems/1011 - E. Kowalski, P. Michel, and J. VanderKam,
*Mollification of the fourth moment of automorphic $L$-functions and arithmetic applications*, Invent. Math.**142**(2000), no. 1, 95–151. MR**1784797**, DOI 10.1007/s002220000086 - Andrew P. Ogg,
*On the eigenvalues of Hecke operators*, Math. Ann.**179**(1969), 101–108. MR**269597**, DOI 10.1007/BF01350121 - Ian Petrow,
*Bounds for traces of Hecke operators and applications to modular and elliptic curves over a finite field*, Algebra Number Theory**12**(2018), no. 10, 2471–2498. MR**3911137**, DOI 10.2140/ant.2018.12.2471 - I. Petrow and M. P. Young,
*The fourth moment of Dirichlet $L$-functions along a coset and the Weyl bound*, preprint arXiv:1908.10346. - Ian Petrow and Matthew P. Young,
*A generalized cubic moment and the Petersson formula for newforms*, Math. Ann.**373**(2019), no. 1-2, 287–353. MR**3968874**, DOI 10.1007/s00208-018-1745-1 - Ian Petrow and Matthew P. Young,
*The Weyl bound for Dirichlet $L$-functions of cube-free conductor*, Ann. of Math. (2)**192**(2020), no. 2, 437–486. MR**4151081**, DOI 10.4007/annals.2020.192.2.3 - G. N. Watson,
*A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR**1349110** - Matthew P. Young,
*Explicit calculations with Eisenstein series*, J. Number Theory**199**(2019), 1–48. MR**3926186**, DOI 10.1016/j.jnt.2018.11.007 - Raphaël Zacharias,
*Simultaneous non-vanishing for Dirichlet $L$-functions*, Ann. Inst. Fourier (Grenoble)**69**(2019), no. 4, 1459–1524 (English, with English and French summaries). MR**4010863**, DOI 10.5802/aif.3275

## Additional Information

**Rizwanur Khan**- Affiliation: Department of Mathematics, University of Mississippi, University, Mississippi 38677
- MR Author ID: 813254
- Email: rrkhan@olemiss.edu
- Received by editor(s): April 8, 2021
- Published electronically: August 16, 2022
- Additional Notes: The author was supported by the National Science Foundation grants DMS-2001183 and DMS-2140604 and the Simons Foundation (award 630985). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**375**(2022), 6769-6796 - MSC (2020): Primary 11F66, 11M41
- DOI: https://doi.org/10.1090/tran/8647