Large sets without Fourier restriction theorems
HTML articles powered by AMS MathViewer
- by Constantin Bilz PDF
- Trans. Amer. Math. Soc. 375 (2022), 6983-7000 Request permission
Abstract:
We construct a function that lies in $L^p(\mathbb {R}^d)$ for every $p \in (1,\infty ]$ and whose Fourier transform has no Lebesgue points in a Cantor set of full Hausdorff dimension. We apply Kovač’s maximal restriction principle to show that the same full-dimensional set is avoided by any Borel measure satisfying a nontrivial Fourier restriction theorem. As a consequence of a near-optimal fractal restriction theorem of Łaba and Wang, we hence prove that there are no previously unknown relations between the Hausdorff dimension of a set and the range of possible Fourier restriction exponents for measures supported in the set.References
- Jean Bourgain and Semyon Dyatlov, Fourier dimension and spectral gaps for hyperbolic surfaces, Geom. Funct. Anal. 27 (2017), no. 4, 744–771. MR 3678500, DOI 10.1007/s00039-017-0412-0
- A. S. Besicovitch, On existence of subsets of finite measure of sets of infinite measure, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 339–344. MR 0048540, DOI 10.1016/S1385-7258(52)50045-3
- Jong-Guk Bak and Andreas Seeger, Extensions of the Stein-Tomas theorem, Math. Res. Lett. 18 (2011), no. 4, 767–781. MR 2831841, DOI 10.4310/MRL.2011.v18.n4.a14
- Xianghong Chen and Andreas Seeger, Convolution powers of Salem measures with applications, Canad. J. Math. 69 (2017), no. 2, 284–320. MR 3612087, DOI 10.4153/CJM-2016-019-6
- R. O. Davies, Subsets of finite measure in analytic sets, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 488–489. MR 0053184, DOI 10.1016/S1385-7258(52)50068-4
- A. M. D′yachkov, Description of sets of Lebesgue points and summability points of a Fourier series, Mat. Sb. 182 (1991), no. 9, 1367–1374 (Russian); English transl., Math. USSR-Sb. 74 (1993), no. 1, 111–118. MR 1133575
- Fredrik Ekström, Fourier dimension of random images, Ark. Mat. 54 (2016), no. 2, 455–471. MR 3546361, DOI 10.1007/s11512-016-0237-3
- Paul Erdös, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974–976. MR 311, DOI 10.2307/2371641
- Paul Erdös, On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math. 62 (1940), 180–186. MR 858, DOI 10.2307/2371446
- Kyle Hambrook and Izabella Łaba, Sharpness of the Mockenhaupt-Mitsis-Bak-Seeger restriction theorem in higher dimensions, Bull. Lond. Math. Soc. 48 (2016), no. 5, 757–770. MR 3556359, DOI 10.1112/blms/bdw041
- Thomas Jordan and Tuomas Sahlsten, Fourier transforms of Gibbs measures for the Gauss map, Math. Ann. 364 (2016), no. 3-4, 983–1023. MR 3466857, DOI 10.1007/s00208-015-1241-9
- Mark Kac, Statistical independence in probability, analysis and number theory. , The Carus Mathematical Monographs, No. 12, Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1959. MR 0110114
- J.-P. Kahane, Sur la distribution de certaines séries aléatoires, Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), Bull. Soc. Math. France, Mém. No. 25, Soc. Math. France Paris, 1971, pp. 119–122 (French). MR 0360498, DOI 10.24033/msmf.42
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- R. Kaufman, On the theorem of Jarník and Besicovitch, Acta Arith. 39 (1981), no. 3, 265–267. MR 640914, DOI 10.4064/aa-39-3-265-267
- Thomas William Körner, Hausdorff and Fourier dimension, Studia Math. 206 (2011), no. 1, 37–50. MR 2845614, DOI 10.4064/sm206-1-3
- Vjekoslav Kovač, Fourier restriction implies maximal and variational Fourier restriction, J. Funct. Anal. 277 (2019), no. 10, 3355–3372. MR 4001074, DOI 10.1016/j.jfa.2019.03.015
- Vjekoslav Kovač and Diogo Oliveira e Silva, A variational restriction theorem, Arch. Math. (Basel) 117 (2021), no. 1, 65–78. MR 4282056, DOI 10.1007/s00013-021-01604-1
- Izabella Łaba, Harmonic analysis and the geometry of fractals, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, pp. 315–329. MR 3729030
- Izabella Łaba and Hong Wang, Decoupling and near-optimal restriction estimates for Cantor sets, Int. Math. Res. Not. IMRN 9 (2018), 2944–2966. MR 3801501, DOI 10.1093/imrn/rnw327
- Themis Mitsis, A Stein-Tomas restriction theorem for general measures, Publ. Math. Debrecen 60 (2002), no. 1-2, 89–99. MR 1882456
- G. Mockenhaupt, Salem sets and restriction properties of Fourier transforms, Geom. Funct. Anal. 10 (2000), no. 6, 1579–1587. MR 1810754, DOI 10.1007/PL00001662
- Detlef Müller, Fulvio Ricci, and James Wright, A maximal restriction theorem and Lebesgue points of functions in $\mathcal F(L^p)$, Rev. Mat. Iberoam. 35 (2019), no. 3, 693–702. MR 3960255, DOI 10.4171/rmi/1066
- Yuval Peres, Wilhelm Schlag, and Boris Solomyak, Sixty years of Bernoulli convolutions, Fractal geometry and stochastics, II (Greifswald/Koserow, 1998) Progr. Probab., vol. 46, Birkhäuser, Basel, 2000, pp. 39–65. MR 1785620
- João P. G. Ramos, Low-dimensional maximal restriction principles for the Fourier transform, Indiana Univ. Math. J. 71 (2022), no. 1, 339–357. MR 4395599, DOI 10.1512/iumj.2022.71.8800
- João P. G. Ramos, Maximal restriction estimates and the maximal function of the Fourier transform, Proc. Amer. Math. Soc. 148 (2020), no. 3, 1131–1138. MR 4055940, DOI 10.1090/proc/14805
- R. Salem, On singular monotonic functions whose spectrum has a given Hausdorff dimension, Ark. Mat. 1 (1951), 353–365. MR 43249, DOI 10.1007/BF02591372
- E. M. Stein, Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–20. MR 545235
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Betsy Stovall, Waves, spheres, and tubes: a selection of Fourier restriction problems, methods, and applications, Notices Amer. Math. Soc. 66 (2019), no. 7, 1013–1022. MR 3967448
- Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478. MR 358216, DOI 10.1090/S0002-9904-1975-13790-6
- Marco Vitturi, A note on maximal Fourier restriction for spheres in all dimensions, Preprint, 2017.
Additional Information
- Constantin Bilz
- Affiliation: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
- Email: c.bilz@pgr.bham.ac.uk
- Received by editor(s): October 25, 2020
- Received by editor(s) in revised form: December 31, 2021
- Published electronically: August 11, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 6983-7000
- MSC (2020): Primary 42B10; Secondary 28A80
- DOI: https://doi.org/10.1090/tran/8714