On the number of generators of an algebra over a commutative ring
HTML articles powered by AMS MathViewer
- by Uriya A. First, Zinovy Reichstein and Ben Williams PDF
- Trans. Amer. Math. Soc. 375 (2022), 7277-7321 Request permission
Abstract:
A theorem of O. Forster says that if $R$ is a noetherian ring of Krull dimension $d$, then every projective $R$-module of rank $n$ can be generated by $d+n$ elements. S. Chase and R. Swan subsequently showed that this bound is sharp: there exist examples that cannot be generated by fewer than $d+n$ elements. We view rank-$n$ projective $R$-modules as $R$-forms of the non-unital $R$-algebra $R^n$ where the product of any two elements is $0$. The first two authors generalized Forster’s theorem to forms of other algebras (not necessarily commutative, associative or unital); A. Shukla and the third author then showed that this generalized Forster bound is optimal for finite étale algebras.
In this paper, we prove new upper and lower bounds on the number of generators of an $R$-form of a $k$-algebra, where $k$ is an infinite field and $R$ is a finitely generated $k$-ring of Krull dimension $d$. In particular, we show that, contrary to expectations, for most types of algebras, the generalized Forster bound is far from optimal. Our results are particularly detailed in the case of Azumaya algebras. Our proofs are based on reinterpreting the problem as a question about approximating the classifying stack $BG$, where $G$ is the automorphism group of the algebra in question, by algebraic spaces of a certain type.
References
- Dave Anderson, Chern class formulas for $G_{2}$ Schubert loci, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6615–6646. MR 2833570, DOI 10.1090/S0002-9947-2011-05317-1
- Aravind Asok and Brent Doran, On unipotent quotients and some $\Bbb A^1$-contractible smooth schemes, Int. Math. Res. Pap. IMRP 2 (2007), Art. ID rpm005, 51. MR 2335246
- D. J. Benson, J. F. Carlson, and G. R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1990), no. 1, 40–73. MR 1054998, DOI 10.1016/0021-8693(90)90165-K
- Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR 1224675, DOI 10.1007/978-1-4757-6848-0
- Michel Brion, Some structure theorems for algebraic groups, Algebraic groups: structure and actions, Proc. Sympos. Pure Math., vol. 94, Amer. Math. Soc., Providence, RI, 2017, pp. 53–126. MR 3645068, DOI 10.24033/bsmf.2075
- Edgar H. Brown Jr., The cohomology of $B\textrm {SO}_{n}$ and $B\textrm {O}_{n}$ with integer coefficients, Proc. Amer. Math. Soc. 85 (1982), no. 2, 283–288. MR 652459, DOI 10.1090/S0002-9939-1982-0652459-1
- Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124. MR 24908, DOI 10.1090/S0002-9947-1948-0024908-8
- Peter Crooks and Tyler Holden, Generalized equivariant cohomology and stratifications, Canad. Math. Bull. 59 (2016), no. 3, 483–496. MR 3563730, DOI 10.4153/CMB-2016-032-5
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- Alexander Duncan and Zinovy Reichstein, Versality of algebraic group actions and rational points on twisted varieties, J. Algebraic Geom. 24 (2015), no. 3, 499–530. With an appendix containing a letter from J.-P. Serre. MR 3344763, DOI 10.1090/S1056-3911-2015-00644-0
- Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595–634. MR 1614555, DOI 10.1007/s002220050214
- Uriya A. First and Zinovy Reichstein, On the number of generators of an algebra, C. R. Math. Acad. Sci. Paris 355 (2017), no. 1, 5–9 (English, with English and French summaries). MR 3590278, DOI 10.1016/j.crma.2016.11.015
- Otto Forster, Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring, Math. Z. 84 (1964), 80–87 (German). MR 163932, DOI 10.1007/BF01112211
- W. S. Gant and Ben Williams, Spaces of generators for the $2 \times 2$ matrix algebra, 2022.
- Skip Garibaldi, Holger P. Petersson, and Michel L. Racine, Albert algebras over Z and other rings, arXiv:2205.09896, 2022.
- Jean Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971 (French). MR 0344253, DOI 10.1007/978-3-662-62103-5
- Nikolai L. Gordeev and Vladimir L. Popov, Automorphism groups of finite dimensional simple algebras, Ann. of Math. (2) 158 (2003), no. 3, 1041–1065. MR 2031860, DOI 10.4007/annals.2003.158.1041
- Gerald Leonard Gordon, The residue calculus in several complex variables, Trans. Amer. Math. Soc. 213 (1975), 127–176. MR 430297, DOI 10.1090/S0002-9947-1975-0430297-3
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- A. Grothendieck, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Seconde partie, Pub. Math. de l’IHÉS 24 (1965), 5–231.
- A. Grothendieck, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, Pub. Math. de l’IHÉS 32 (1967), 5–361.
- Helmut A. Hamm and Lê Dũng Tráng, Lefschetz theorems on quasiprojective varieties, Bull. Soc. Math. France 113 (1985), no. 2, 123–142 (English, with French summary). MR 820315, DOI 10.24033/bsmf.2023
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York-Berlin, 1981. MR 620024, DOI 10.1007/978-1-4613-8114-3
- Wu-yi Hsiang, Cohomology theory of topological transformation groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85, Springer-Verlag, New York-Heidelberg, 1975. MR 0423384, DOI 10.1007/978-3-642-66052-8
- Birger Iversen, Cohomology of sheaves, no. Book, Whole, Springer Berlin Heidelberg, Berlin, Heidelberg, 1986.
- I. M. James, General topology and homotopy theory, Springer-Verlag, New York, 1984. MR 762634, DOI 10.1007/978-1-4613-8283-6
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- T. Y. Lam, A theorem of Burnside on matrix rings, Amer. Math. Monthly 105 (1998), no. 7, 651–653. MR 1633085, DOI 10.2307/2589248
- Victor Lomonosov and Peter Rosenthal, The simplest proof of Burnside’s theorem on matrix algebras, Linear Algebra Appl. 383 (2004), 45–47. MR 2073890, DOI 10.1016/j.laa.2003.08.012
- A. Malcev, On the theory of the Lie groups in the large, Rec. Math. [Mat. Sbornik] N. S. 16(58) (1945), 163–190 (English, with Russian summary). MR 0013165
- J. S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field. MR 3729270, DOI 10.1017/9781316711736
- James S. Milne, Algebraic groups as automorphism groups of algebras, arXiv:2012.05708 [math], 2020, 14.
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Taeuk Nam, Cindy Tan, and Ben Williams, Spaces of generators for matrix algebras with involution, Linear and Multilinear Algebra (2022), DOI 10.1080/03081087.2022.2063244
- I. Panin, Oriented cohomology theories of algebraic varieties, $K$-Theory 30 (2003), no. 3, 265–314. Special issue in honor of Hyman Bass on his seventieth birthday. Part III. MR 2064242, DOI 10.1023/B:KTHE.0000019788.33790.cb
- Ivan Panin, Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov), Homology Homotopy Appl. 11 (2009), no. 1, 349–405. MR 2529164, DOI 10.4310/HHA.2009.v11.n1.a14
- R. David Pollack, Algebras and their automorphism groups, Comm. Algebra 17 (1989), no. 8, 1843–1866. MR 1013471, DOI 10.1080/00927878908823824
- M. L. Racine, On maximal subalgebras, J. Algebra 30 (1974), 155–180. MR 349771, DOI 10.1016/0021-8693(74)90198-7
- M. L. Racine, Maximal subalgebras of exceptional Jordan algebras, J. Algebra 46 (1977), no. 1, 12–21. MR 450356, DOI 10.1016/0021-8693(77)90391-X
- Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 1–42 (French). MR 82175, DOI 10.5802/aif.59
- Jean-Pierre Serre, Cohomological invariants, Witt invariants, and trace forms, Cohomological invariants in Galois cohomology, Univ. Lecture Ser., vol. 28, Amer. Math. Soc., Providence, RI, 2003, pp. 1–100. Notes by Skip Garibaldi. MR 1999384
- Abhishek Kumar Shukla and Ben Williams, Classifying spaces for étale algebras with generators, Canad. J. Math. 73 (2021), no. 3, 854–874. MR 4282693, DOI 10.4153/S0008414X20000206
- The Stacks Project authors, The Stacks Project, 2020, https://stacks.math.columbia.edu.
- Richard G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277. MR 143225, DOI 10.1090/S0002-9947-1962-0143225-6
- Richard G. Swan, The number of generators of a module, Math. Z. 102 (1967), 318–322. MR 218347, DOI 10.1007/BF01110912
- Burt Totaro, The Chow ring of a classifying space, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249–281. MR 1743244, DOI 10.1090/pspum/067/1743244
- F. van der Blij and T. A. Springer, The arithmetics of octaves and of the group $G_{2}$, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 406–418. MR 0152555
- Charles A. Weibel, Homotopy algebraic $K$-theory, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 461–488. MR 991991, DOI 10.1090/conm/083/991991
- Bruce W. Westbury, Sextonions and the magic square, J. London Math. Soc. (2) 73 (2006), no. 2, 455–474. MR 2225497, DOI 10.1112/S0024610706022605
Additional Information
- Uriya A. First
- Affiliation: Department of Mathematics, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 3498838, Israel
- MR Author ID: 1007314
- ORCID: 0000-0002-6754-8009
- Email: ufirst@univ.haifa.ac.il
- Zinovy Reichstein
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- MR Author ID: 268803
- ORCID: 0000-0002-3157-2066
- Email: reichst@math.ubc.ca
- Ben Williams
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- MR Author ID: 924943
- ORCID: 0000-0001-9688-2471
- Email: tbjw@math.ubc.ca
- Received by editor(s): January 9, 2022
- Received by editor(s) in revised form: March 7, 2022
- Published electronically: August 11, 2022
- Additional Notes: The second and third authors were partially supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 7277-7321
- MSC (2020): Primary 14L30, 16H05, 16S15, 14F25, 55R40; Secondary 17A36, 13E15, 20G10, 14M17
- DOI: https://doi.org/10.1090/tran/8720