AF $C^*$-algebras from non-AF groupoids
HTML articles powered by AMS MathViewer
- by Ian Mitscher and Jack Spielberg PDF
- Trans. Amer. Math. Soc. 375 (2022), 7323-7371 Request permission
Abstract:
We construct ample groupoids from certain categories of paths, and prove that their $C^*$-algebras coincide with the continued fraction approximately finite dimensional (AF) algebras of Effros and Shen. The proof relies on recent classification results for simple nuclear $C^*$-algebras. The groupoids are not principal. This provides examples of Cartan subalgebras in the continued fraction AF algebras that are isomorphic, but not conjugate, to the standard diagonal subalgebras.References
- Bruce Blackadar, $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
- Ola Bratteli and Akitaka Kishimoto, Noncommutative spheres. III. Irrational rotations, Comm. Math. Phys. 147 (1992), no. 3, 605–624. MR 1175495
- Kenneth R. Davidson, $C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012, DOI 10.1090/fim/006
- D. Drinen, Viewing AF-algebras as graph algebras, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1991–2000. MR 1657723, DOI 10.1090/S0002-9939-99-05286-7
- Siegfried Echterhoff, Wolfgang Lück, N. Christopher Phillips, and Samuel Walters, The structure of crossed products of irrational rotation algebras by finite subgroups of $\textrm {SL}_2(\Bbb Z)$, J. Reine Angew. Math. 639 (2010), 173–221. MR 2608195, DOI 10.1515/CRELLE.2010.015
- Edward G. Effros and Chao Liang Shen, Approximately finite $C^{\ast }$-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), no. 2, 191–204. MR 563206, DOI 10.1512/iumj.1980.29.29013
- D. G. Evans, On higher rank graphs C*-algebras, Ph.D. Thesis, Cardiff University, 2002.
- D. Gwion Evans, On the $K$-theory of higher rank graph $C^*$-algebras, New York J. Math. 14 (2008), 1–31. MR 2383584
- D. Gwion Evans and Aidan Sims, When is the Cuntz-Krieger algebra of a higher-rank graph approximately finite-dimensional?, J. Funct. Anal. 263 (2012), no. 1, 183–215. MR 2920846, DOI 10.1016/j.jfa.2012.03.024
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- A. Kumjian, An involutive automorphism of the Bunce-Deddens algebra, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 5, 217–218. MR 962104
- Alex Kumjian and David Pask, Higher rank graph $C^\ast$-algebras, New York J. Math. 6 (2000), 1–20. MR 1745529
- Alex Kumjian, David Pask, and Iain Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), no. 1, 161–174. MR 1626528, DOI 10.2140/pjm.1998.184.161
- Marcelo Laca, Nadia S. Larsen, and Sergey Neshveyev, On Bost-Connes types systems for number fields, J. Number Theory 129 (2009), no. 2, 325–338. MR 2473881, DOI 10.1016/j.jnt.2008.09.008
- Xin Li and Jean Renault, Cartan subalgebras in $\textrm {C}^*$-algebras. Existence and uniqueness, Trans. Amer. Math. Soc. 372 (2019), no. 3, 1985–2010. MR 3976582, DOI 10.1090/tran/7654
- Ian Erroll Mitscher, Representing Certain Continued Fraction AF Algebras as C*-Algebras of Categories of Paths and Non-AF Groupoids, ProQuest LLC, Ann Arbor, MI, 2020. Thesis (Ph.D.)–Arizona State University. MR 4106401
- Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Equivalence and isomorphism for groupoid $C^\ast$-algebras, J. Operator Theory 17 (1987), no. 1, 3–22. MR 873460
- Sergey Neshveyev, KMS states on the $C^\ast$-algebras of non-principal groupoids, J. Operator Theory 70 (2013), no. 2, 513–530. MR 3138368, DOI 10.7900/jot.2011sep20.1915
- Iain Raeburn, Graph algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005. MR 2135030, DOI 10.1090/cbms/103
- Iain Raeburn, Aidan Sims, and Trent Yeend, The $C^*$-algebras of finitely aligned higher-rank graphs, J. Funct. Anal. 213 (2004), no. 1, 206–240. MR 2069786, DOI 10.1016/j.jfa.2003.10.014
- Iain Raeburn and Wojciech Szymański, Cuntz-Krieger algebras of infinite graphs and matrices, Trans. Amer. Math. Soc. 356 (2004), no. 1, 39–59. MR 2020023, DOI 10.1090/S0002-9947-03-03341-5
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266, DOI 10.1007/BFb0091072
- Jean Renault, The ideal structure of groupoid crossed product $C^\ast$-algebras, J. Operator Theory 25 (1991), no. 1, 3–36. With an appendix by Georges Skandalis. MR 1191252
- Jean Renault, Cartan subalgebras in $C^*$-algebras, Irish Math. Soc. Bull. 61 (2008), 29–63. MR 2460017, DOI 10.33232/BIMS.0061.29.63
- M. Rørdam, F. Larsen, and N. Laustsen, An introduction to $K$-theory for $C^*$-algebras, London Mathematical Society Student Texts, vol. 49, Cambridge University Press, Cambridge, 2000. MR 1783408
- Jack Spielberg, Groupoids and $C^*$-algebras for categories of paths, Trans. Amer. Math. Soc. 366 (2014), no. 11, 5771–5819. MR 3256184, DOI 10.1090/S0002-9947-2014-06008-X
- Jack Spielberg, Groupoids and $C^*$-algebras for left cancellative small categories, Indiana Univ. Math. J. 69 (2020), no. 5, 1579–1626. MR 4151331, DOI 10.1512/iumj.2020.69.7969
- Şerban Strătilă and Dan Voiculescu, Representations of AF-algebras and of the group $U(\infty )$, Lecture Notes in Mathematics, Vol. 486, Springer-Verlag, Berlin-New York, 1975. MR 0458188, DOI 10.1007/BFb0082276
- Aaron Tikuisis, Stuart White, and Wilhelm Winter, Quasidiagonality of nuclear $C^\ast$-algebras, Ann. of Math. (2) 185 (2017), no. 1, 229–284. MR 3583354, DOI 10.4007/annals.2017.185.1.4
- Jean-Louis Tu, La conjecture de Baum-Connes pour les feuilletages moyennables, $K$-Theory 17 (1999), no. 3, 215–264 (French, with English and French summaries). MR 1703305, DOI 10.1023/A:1007744304422
- Jason Tyler, Every AF-algebra is Morita equivalent to a graph algebra, Bull. Austral. Math. Soc. 69 (2004), no. 2, 237–240. MR 2051359, DOI 10.1017/S0004972700035978
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, N. Y., 1948. MR 0025596
- Dana P. Williams, A tool kit for groupoid $C^*$-algebras, Mathematical Surveys and Monographs, vol. 241, American Mathematical Society, Providence, RI, 2019. MR 3969970, DOI 10.1016/j.physletb.2019.06.021
- Wilhelm Winter and Joachim Zacharias, The nuclear dimension of $C^\ast$-algebras, Adv. Math. 224 (2010), no. 2, 461–498. MR 2609012, DOI 10.1016/j.aim.2009.12.005
Additional Information
- Ian Mitscher
- Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, Arizona
- Email: ian.mitscher@gmail.com
- Jack Spielberg
- Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, Arizona
- MR Author ID: 165525
- Email: jack.spielberg@asu.edu
- Received by editor(s): July 20, 2021
- Received by editor(s) in revised form: March 16, 2022, and March 17, 2022
- Published electronically: July 29, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 7323-7371
- MSC (2020): Primary 46L05; Secondary 46L80, 22A22
- DOI: https://doi.org/10.1090/tran/8723