Rational equivalence on adjoint groups of type $D_n$ over fields of virtual cohomological dimension $2$
HTML articles powered by AMS MathViewer
- by M. Archita and R. Preeti PDF
- Trans. Amer. Math. Soc. 375 (2022), 7373-7384 Request permission
Abstract:
Let $F$ be a field of characteristic different from $2$ and such that virtual cohomological dimension of $F$ is $2$. Let $G$ be a semisimple classical adjoint group of type $D_n$ defined over $F$. We show that $G(F) / R = 0$, where $R$ denotes rational equivalence on $G(F)$. The analogous result for groups of type ${}^1A_n$ and $B_n$ has been proved by Merkurjev, for groups of type ${}^2A_{2n}$ by Voskresenskii-Klyachko and for general groups of type ${}^2A_n$ and $C_n$ by Kulshreshta-Parimala. Combining the main theorem of this paper with the above mentioned results, we have $G(F) / R$ is trivial, for any semisimple adjoint classical group $G$ defined over $F$.References
- Hans-Jochen Bartels, Invarianten hermitescher Formen über Schiefkörpern, Math. Ann. 215 (1975), 269–288 (German). MR 419353, DOI 10.1007/BF01343894
- E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomological dimension $\leq 2$, Invent. Math. 122 (1995), no. 2, 195–229. MR 1358975, DOI 10.1007/BF01231443
- E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2) 147 (1998), no. 3, 651–693. MR 1637659, DOI 10.2307/120961
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280, DOI 10.24033/asens.1325
- Philippe Gille, La $R$-équivalence sur les groupes algébriques réductifs définis sur un corps global, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 199–235 (1998) (French). MR 1608570, DOI 10.1007/BF02698903
- Kazuya Kato and Shuji Saito, Unramified class field theory of arithmetical surfaces, Ann. of Math. (2) 118 (1983), no. 2, 241–275. MR 717824, DOI 10.2307/2007029
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044
- Amit Kulshrestha and R. Parimala, $R$-equivalence in adjoint classical groups over fields of virtual cohomological dimension 2, Trans. Amer. Math. Soc. 360 (2008), no. 3, 1193–1221. MR 2357694, DOI 10.1090/S0002-9947-07-04300-0
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
- A. S. Merkurjev, $R$-equivalence and rationality problem for semisimple adjoint classical algebraic groups, Inst. Hautes Études Sci. Publ. Math. 84 (1996), 189–213 (1997). MR 1441008, DOI 10.1007/BF02698837
- A. S. Merkur′ev, On the norm residue symbol of degree $2$, Dokl. Akad. Nauk SSSR 261 (1981), no. 3, 542–547 (Russian). MR 638926
- A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461 (1995), 13–47. MR 1324207, DOI 10.1515/crll.1995.461.13
- R. Parimala and R. Preeti, Hasse principle for classical groups over function fields of curves over number fields, J. Number Theory 101 (2003), no. 1, 151–184. MR 1979657, DOI 10.1016/S0022-314X(03)00009-X
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80 (French). MR 631309, DOI 10.1515/crll.1981.327.12
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62. MR 0224710
- V. E. Voskresenskii and A. A. Klaychko, Toroidal Fano varieties and root systems, Math. USSR Izvestiya 24 (1985), 221–244.
- Adrian R. Wadsworth, Merkurjev’s elementary proof of Merkurjev’s theorem, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 741–776. MR 862663, DOI 10.1090/conm/055.2/1862663
- André Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24 (1960), 589–623 (1961). MR 136682
Additional Information
- M. Archita
- Affiliation: Department of Mathematics, Indian Institute of Technology (Bombay), Powai, Mumbai 400076, India
- Email: archita@math.iitb.ac.in
- R. Preeti
- Affiliation: Department of Mathematics, Indian Institute of Technology (Bombay), Powai, Mumbai 400076, India
- MR Author ID: 659319
- Email: preeti@math.iitb.ac.in
- Received by editor(s): December 31, 2021
- Received by editor(s) in revised form: March 28, 2022, and March 30, 2022
- Published electronically: August 11, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 7373-7384
- MSC (2020): Primary 20G15, 14G05
- DOI: https://doi.org/10.1090/tran/8726