Minimal free resolutions of differential modules
HTML articles powered by AMS MathViewer
- by Michael K. Brown and Daniel Erman PDF
- Trans. Amer. Math. Soc. 375 (2022), 7509-7528 Request permission
Abstract:
We propose a notion of minimal free resolutions for differential modules, and we prove existence and uniqueness results for such resolutions. We also take the first steps toward studying the structure of minimal free resolutions of differential modules. Our main result in this direction explains a sense in which the minimal free resolution of a differential module is a deformation of the minimal free resolution of its homology; this leads to structural results that mirror classical theorems about minimal free resolutions of modules.References
- Luchezar L. Avramov, Ragnar-Olaf Buchweitz, and Srikanth Iyengar, Class and rank of differential modules, Invent. Math. 169 (2007), no. 1, 1–35. MR 2308849, DOI 10.1007/s00222-007-0041-6
- Luchezar L. Avramov and Irena Peeva, Finite regularity and Koszul algebras, Amer. J. Math. 123 (2001), no. 2, 275–281. MR 1828224, DOI 10.1353/ajm.2001.0008
- David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, DOI 10.2307/2373926
- Michael K. Brown and Daniel Erman, Tate resolutions on toric varieties, Preprint, arXiv:2108.03345, 2021.
- Mats Boij and Jonas Söderberg, Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, J. Lond. Math. Soc. (2) 78 (2008), no. 1, 85–106. MR 2427053, DOI 10.1112/jlms/jdn013
- Maya Banks and Keller Vandebogert, Differential modules with complete intersection homology, Preprint, arXiv:2203.15017, 2022.
- Gunnar Carlsson, Free $(\textbf {Z}/2)^k$-actions and a problem in commutative algebra, Transformation groups, Poznań 1985, Lecture Notes in Math., vol. 1217, Springer, Berlin, 1986, pp. 79–83. MR 874170, DOI 10.1007/BFb0072815
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. With an appendix by David A. Buchsbaum; Reprint of the 1956 original. MR 1731415
- Berrin Şentürk and Özgün Ünlü, Carlsson’s rank conjecture and a conjecture on square-zero upper triangular matrices, J. Pure Appl. Algebra 223 (2019), no. 6, 2562–2584. MR 3906563, DOI 10.1016/j.jpaa.2018.09.007
- Justin W. DeVries, On the Betti number of differential modules, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–The University of Nebraska - Lincoln. MR 2941789
- David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426. MR 1990756, DOI 10.1090/S0002-9947-03-03291-4
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud and Frank-Olaf Schreyer, Betti numbers of graded modules and cohomology of vector bundles, J. Amer. Math. Soc. 22 (2009), no. 3, 859–888. MR 2505303, DOI 10.1090/S0894-0347-08-00620-6
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Gunnar Fløystad, Boij-Söderberg theory: introduction and survey, Progress in commutative algebra 1, de Gruyter, Berlin, 2012, pp. 1–54. MR 2932580
- Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
- Robin Hartshorne, Algebraic vector bundles on projective spaces: a problem list, Topology 18 (1979), no. 2, 117–128. MR 544153, DOI 10.1016/0040-9383(79)90030-2
- F. T. Hawwa, J. William Hoffman, and Haohao Wang, Koszul duality for multigraded algebras, Eur. J. Pure Appl. Math. 5 (2012), no. 4, 511–539. MR 2996984
- Srikanth B. Iyengar and Mark E. Walker, Examples of finite free complexes of small rank and small homology, Acta Math. 221 (2018), no. 1, 143–158. MR 3877020, DOI 10.4310/ACTA.2018.v221.n1.a4
- Paul C. Roberts, Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics, vol. 133, Cambridge University Press, Cambridge, 1998. MR 1686450, DOI 10.1017/CBO9780511529986
- Raphaël Rouquier, Representation dimension of exterior algebras, Invent. Math. 165 (2006), no. 2, 357–367. MR 2231960, DOI 10.1007/s00222-006-0499-7
- Claus Michael Ringel and Pu Zhang, Representations of quivers over the algebra of dual numbers, J. Algebra 475 (2017), 327–360. MR 3612474, DOI 10.1016/j.jalgebra.2016.12.001
- Torkil Stai, Differential modules over quadratic monomial algebras, Algebr. Represent. Theory 20 (2017), no. 5, 1239–1247. MR 3707913, DOI 10.1007/s10468-017-9684-1
- Torkil Stai, The triangulated hull of periodic complexes, Math. Res. Lett. 25 (2018), no. 1, 199–236. MR 3818620, DOI 10.4310/mrl.2018.v25.n1.a9
- Xi Tang and Zhaoyong Huang, Higher differential objects in additive categories, J. Algebra 549 (2020), 128–164. MR 4050670, DOI 10.1016/j.jalgebra.2019.12.011
- Mark E. Walker, Total Betti numbers of modules of finite projective dimension, Ann. of Math. (2) 186 (2017), no. 2, 641–646. MR 3702675, DOI 10.4007/annals.2017.186.2.6
- Jiaqun Wei, Gorenstein homological theory for differential modules, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 3, 639–655. MR 3371571, DOI 10.1017/S0308210513000541
- Huabo Xu, Shilin Yang, and Hailou Yao, Gorenstein theory for $n$-th differential modules, Period. Math. Hungar. 71 (2015), no. 1, 112–124. MR 3374705, DOI 10.1007/s10998-015-0084-1
Additional Information
- Michael K. Brown
- Affiliation: Department of Mathematics, Auburn University, Auburn, Alabama
- Email: mkb0096@auburn.edu
- Daniel Erman
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin
- MR Author ID: 877182
- ORCID: 0000-0002-4110-2332
- Email: derman@math.wisc.edu
- Received by editor(s): August 12, 2021
- Received by editor(s) in revised form: May 31, 2022
- Published electronically: August 11, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 7509-7528
- MSC (2020): Primary 13D02
- DOI: https://doi.org/10.1090/tran/8754