Cones of special cycles of codimension 2 on orthogonal Shimura varieties
HTML articles powered by AMS MathViewer
- by Riccardo Zuffetti PDF
- Trans. Amer. Math. Soc. 375 (2022), 7385-7441 Request permission
Abstract:
Let $X$ be an orthogonal Shimura variety associated to a unimodular lattice. We investigate the polyhedrality of the cone $\mathcal {C}_X$ of special cycles of codimension 2 on $X$. We show that the rays generated by such cycles accumulate towards infinitely many rays, the latter generating a non-trivial cone. We also prove that such an accumulation cone is polyhedral. The proof relies on analogous properties satisfied by the cones of Fourier coefficients of Siegel modular forms. We show that the accumulation rays of $\mathcal {C}_X$ are generated by combinations of Heegner divisors intersected with the Hodge class of $X$. As a result of the classification of the accumulation rays, we implement an algorithm in SageMath to certify the polyhedrality of $\mathcal {C}_X$ in some cases.References
- Francesco Bastianelli, Alexis Kouvidakis, Angelo Felice Lopez, and Filippo Viviani, Effective cycles on the symmetric product of a curve, I: The diagonal cone, Trans. Amer. Math. Soc. 372 (2019), no. 12, 8709–8758. With an appendix by Ben Moonen. MR 4029710, DOI 10.1090/tran/7867
- Nicolas Bergeron, Zhiyuan Li, John Millson, and Colette Moeglin, The Noether-Lefschetz conjecture and generalizations, Invent. Math. 208 (2017), no. 2, 501–552. MR 3639598, DOI 10.1007/s00222-016-0695-z
- Siegfried Böcherer and Soumya Das, Petersson norms of not necessarily cuspidal Jacobi modular forms and applications, Adv. Math. 336 (2018), 335–376. MR 3846155, DOI 10.1016/j.aim.2018.07.033
- Jan H. Bruinier, Borcherds products on O(2, $l$) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002. MR 1903920, DOI 10.1007/b83278
- José L. Rubio De Francia, Vector-valued inequalities for Fourier series, Proc. Amer. Math. Soc. 78 (1980), no. 4, 525–528. MR 556625, DOI 10.1090/S0002-9939-1980-0556625-3
- Jan Hendrik Bruinier and Martin Möller, Cones of Heegner divisors, J. Algebraic Geom. 28 (2019), no. 3, 497–517. MR 3959069, DOI 10.1090/jag/734
- Jan Hendrik Bruinier, Gerard van der Geer, Günter Harder, and Don Zagier, The 1-2-3 of modular forms, Universitext, Springer-Verlag, Berlin, 2008. Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004; Edited by Kristian Ranestad. MR 2385372, DOI 10.1007/978-3-540-74119-0
- Jan Hendrik Bruinier and Martin Westerholt-Raum, Kudla’s modularity conjecture and formal Fourier-Jacobi series, Forum Math. Pi 3 (2015), e7, 30. MR 3406827, DOI 10.1017/fmp.2015.6
- Dawei Chen and Izzet Coskun, Extremal higher codimension cycles on moduli spaces of curves, Proc. Lond. Math. Soc. (3) 111 (2015), no. 1, 181–204. MR 3404780, DOI 10.1112/plms/pdv029
- Henri Cohen, Sums involving the values at negative integers of $L$-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271–285. MR 382192, DOI 10.1007/BF01436180
- Izzet Coskun, John Lesieutre, and John Christian Ottem, Effective cones of cycles on blowups of projective space, Algebra Number Theory 10 (2016), no. 9, 1983–2014. MR 3576118, DOI 10.2140/ant.2016.10.1983
- Soumya Das, Cuspidality and the growth of Fourier coefficients of modular forms: a survey, Indian J. Pure Appl. Math. 47 (2016), no. 1, 9–22. MR 3477807, DOI 10.1007/s13226-015-0165-0
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Mihai Fulger, The cones of effective cycles on projective bundles over curves, Math. Z. 269 (2011), no. 1-2, 449–459. MR 2836078, DOI 10.1007/s00209-010-0744-z
- S. Grushevsky and K. Hulek, On the cone of effective surfaces on $\overline {\mathcal {A}_3}$, arXiv:2007.02995 (2020). Moscow Mathematical Journal, to appear.
- Hidenori Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999), no. 2, 415–452. MR 1680317, DOI 10.1353/ajm.1999.0013
- Günter Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades, Math. Ann. 137 (1959), 454–476 (German). MR 121485, DOI 10.1007/BF01360845
- Yoshiyuki Kitaoka, Modular forms of degree $n$ and representation by quadratic forms, Nagoya Math. J. 74 (1979), 95–122. MR 535963, DOI 10.1017/S002776300001847X
- Helmut Klingen, Introductory lectures on Siegel modular forms, Cambridge Studies in Advanced Mathematics, vol. 20, Cambridge University Press, Cambridge, 1990. MR 1046630, DOI 10.1017/CBO9780511619878
- Aloys Krieg and Martin Raum, The functional equation for the twisted spinor $L$-series of genus 2, Abh. Math. Semin. Univ. Hambg. 83 (2013), no. 1, 29–52. MR 3055821, DOI 10.1007/s12188-013-0073-3
- Stephen S. Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), no. 1, 39–78. MR 1427845, DOI 10.1215/S0012-7094-97-08602-6
- Stephen S. Kudla, Remarks on generating series for special cycles on orthogonal Shimura varieties, Algebra Number Theory 15 (2021), no. 10, 2403–2447. MR 4377855, DOI 10.2140/ant.2021.15.2403
- Qifeng Li, Pseudo-effective and nef cones on spherical varieties, Math. Z. 280 (2015), no. 3-4, 945–979. MR 3369360, DOI 10.1007/s00209-015-1457-0
- Eduard Looijenga, $L^2$-cohomology of locally symmetric varieties, Compositio Math. 67 (1988), no. 1, 3–20. MR 949269
- Yota Maeda, The modularity of special cycles on orthogonal Shimura varieties over totally real fields under the Beilinson-Bloch conjecture, Canad. Math. Bull. 64 (2021), no. 1, 39–53. MR 4242991, DOI 10.4153/S000843952000020X
- Laurenţiu G. Maxim, Intersection homology & perverse sheaves—with applications to singularities, Graduate Texts in Mathematics, vol. 281, Springer, Cham, [2019] ©2019. MR 4269941, DOI 10.1007/978-3-030-27644-7
- Abhishek Saha, Siegel cusp forms of degree 2 are determined by their fundamental Fourier coefficients, Math. Ann. 355 (2013), no. 1, 363–380. MR 3004586, DOI 10.1007/s00208-012-0789-x
- Leslie Saper and Mark Stern, $L_2$-cohomology of arithmetic varieties, Ann. of Math. (2) 132 (1990), no. 1, 1–69. MR 1059935, DOI 10.2307/1971500
- Luca Schaffler, On the cone of effective 2-cycles on $\overline {M}_{0,7}$, Eur. J. Math. 1 (2015), no. 4, 669–694. MR 3426173, DOI 10.1007/s40879-015-0072-2
- W. A. Stein, et al., Sage Mathematics software (version 8.1), The Sage Development Team, 2017.
- S. Takemori, A Sage package for computation of degree 2 Siegel modular forms, 2017, https://github.com/stakemori/degree2/.
- Martin Westerholt-Raum, Formal Fourier Jacobi expansions and special cycles of codimension two, Compos. Math. 151 (2015), no. 12, 2187–2211. MR 3433884, DOI 10.1112/S0010437X15007514
- Wei Zhang, Modularity of generating functions of special cycles on Shimura varieties, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Columbia University. MR 2717745
- R. Zuffetti, modcone_genus_2, A SageMath program to compute modular cones, available at https://www.uni-frankfurt.de/115635982/M_Sc__Riccardo_Zuffetti.
- R. Zuffetti, Cones of special cycles and unfolding of the Kudla–Millson lift, Ph.D. Thesis, 2021.
Additional Information
- Riccardo Zuffetti
- Affiliation: Institut für Mathematik, Goethe–Universität Frankfurt, Robert-Mayer-Str. 6–8, 60325 Frankfurt am Main, Germany
- ORCID: 0000-0001-9702-0785
- Email: zuffetti@math.uni-frankfurt.de, riccardo.zuffetti@gmail.com
- Received by editor(s): March 8, 2022
- Received by editor(s) in revised form: May 1, 2022
- Published electronically: August 16, 2022
- Additional Notes: This research was founded by the LOEWE research unit “Uniformized Structures in Arithmetic and Geometry”, and by the Collaborative Research Centre TRR 326 “Geometry and Arithmetic of Uniformized Structures”, project number 444845124.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 7385-7441
- MSC (2020): Primary 14C25; Secondary 11F30
- DOI: https://doi.org/10.1090/tran/8757