Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Generalized Carleson perturbations of elliptic operators and applications
HTML articles powered by AMS MathViewer

by Joseph Feneuil and Bruno Poggi PDF
Trans. Amer. Math. Soc. 375 (2022), 7553-7599 Request permission

Abstract:

We extend in two directions the notion of perturbations of Carleson type for the Dirichlet problem associated to an elliptic real second-order divergence-form (possibly degenerate, not necessarily symmetric) elliptic operator. First, in addition to the classical perturbations of Carleson type, that we call additive Carleson perturbations, we introduce scalar-multiplicative and antisymmetric Carleson perturbations, which both allow non-trivial differences at the boundary. Second, we consider domains which admit an elliptic PDE in a broad sense: we count as examples the 1-sided NTA (a.k.a. uniform) domains satisfying the capacity density condition, the 1-sided chord-arc domains, the domains with low-dimensional Ahlfors-David regular boundaries, and certain domains with mixed-dimensional boundaries; thus our methods provide a unified perspective on the Carleson perturbation theory of elliptic operators.

Our proofs do not introduce sawtooth domains or the extrapolation method. We also present several applications to some Dahlberg-Kenig-Pipher operators, free-boundary problems, and we provide a new characterization of $A_{\infty }$ among elliptic measures.

References
  • M. Angeles Alfonseca, Pascal Auscher, Andreas Axelsson, Steve Hofmann, and Seick Kim, Analyticity of layer potentials and $L^2$ solvability of boundary value problems for divergence form elliptic equations with complex $L^\infty$ coefficients, Adv. Math. 226 (2011), no. 5, 4533–4606, DOI 10.1016/j.aim.2010.12.014.
  • Pascal Auscher, Andreas Axelsson, and Steve Hofmann, Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems, J. Funct. Anal. 255 (2008), no. 2, 374–448. MR 2419965, DOI 10.1016/j.jfa.2008.02.007
  • Pascal Auscher, Andreas Axelsson, and Alan McIntosh, Solvability of elliptic systems with square integrable boundary data, Ark. Mat. 48 (2010), no. 2, 253–287, DOI 10.1007/s11512-009-0108-2.
  • Pascal Auscher, Steve Hofmann, John L. Lewis, and Philippe Tchamitchian, Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators, Acta Math. 187 (2001), no. 2, 161–190, DOI 10.1007/BF02392615.
  • Jonas Azzam, Steve Hofmann, José María Martell, Mihalis Mourgoglou, and Xavier Tolsa, Harmonic measure and quantitative connectivity: geometric characterization of the $L_p$-solvability of the Dirichlet problem, Invent. Math., Accepted for publication, arXiv:1907.07102.
  • Jonas Azzam, Steve Hofmann, José María Martell, Kaj Nyström, and Tatiana Toro, A new characterization of chord-arc domains, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 4, 967–981, DOI 10.4171/JEMS/685.
  • Murat Akman, Steve Hofmann, José María Martell, and Tatiana Toro, Perturbation of elliptic operators in 1-sided nta domains satisfying the capacity density condition, Preprint, arXiv:1901.08261, January 2019.
  • Simon Bortz, Steve Hofmann, José Luis Luna García, Svitlana Mayboroda, and Bruno Poggi, Critical perturbations for second order elliptic operators. Part ii: existence, uniqueness, and bounds on the non-tangential maximal function, Project.
  • Simon Bortz, Steve Hofmann, José Luis Luna García, Svitlana Mayboroda, and Bruno Poggi, Critical perturbations for second order elliptic operators. Part i: square function bounds for layer potentials, Preprint, arXiv:2003.02703, March 2020.
  • Björn Bennewitz and John L. Lewis, On weak reverse Hölder inequalities for nondoubling harmonic measures, Complex Var. Theory Appl. 49 (2004), no. 7–9, 571–582, DOI 10.1080/02781070410001731738.
  • Mingming Cao, Óscar Domínguez, José María Martell, and Pedro Tradacete, On the $a_\infty$ condition for elliptic operators in 1-sided nta domains satisfying the capacity density condition, arXiv:2101.06064, 2021.
  • Luis A. Caffarelli, Eugene B. Fabes, and Carlos E. Kenig, Completely singular elliptic-harmonic measures, Indiana Univ. Math. J. 30 (1981), no. 6, 917–924, DOI 10.1512/iumj.1981.30.30067.
  • Juan Cavero, Steve Hofmann, and José María Martell, Perturbations of elliptic operators in 1-sided chord-arc domains. Part I: Small and large perturbation for symmetric operators, Trans. Amer. Math. Soc. 371 (2019), no. 4, 2797–2835. MR 3896098, DOI 10.1090/tran/7536
  • Juan Cavero, Steve Hofmann, José María Martell, and Tatiana Toro, Perturbations of elliptic operators in 1-sided chord-arc domains. Part II: non-symmetric operators and Carleson measure estimates, Trans. Amer. Math. Soc. 373 (2020), no. 11, 7901–7935, DOI 10.1090/tran/8148.
  • Michael Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400, DOI 10.4064/cm-60-61-2-601-628
  • Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Ration. Mech. Anal. 65 (1977), no. 3, 275–288, DOI 10.1007/BF00280445.
  • Björn E. J. Dahlberg, On the Poisson integral for Lipschitz and $C^{1}$-domains, Studia Math. 66 (1979), no. 1, 13–24. MR 562447, DOI 10.4064/sm-66-1-13-24
  • Björn E. J. Dahlberg, On the absolute continuity of elliptic measures, Amer. J. Math. 108 (1986), no. 5, 1119–1138. MR 859772, DOI 10.2307/2374598
  • Björn E. J. Dahlberg, Poisson semigroups and singular integrals, Proc. Amer. Math. Soc. 97 (1986), no. 1, 41–48, DOI 10.2307/2046077.
  • Guy David, Joseph Feneuil, and Svitlana Mayboroda, Elliptic theory in domains with boundaries of mixed dimension, Preprint, arXiv:2003.09037v1, Submitted March 2020.
  • Guy David, Joseph Feneuil, and Svitlana Mayboroda, Dahlberg’s theorem in higher co-dimension, J. Funct. Anal. 276 (2019), no. 9, 2731–2820. MR 3926132, DOI 10.1016/j.jfa.2019.02.006
  • G. David, J. Feneuil, and S. Mayboroda, Elliptic theory for sets with higher co-dimensional boundaries, Mem. Amer. Math. Soc. 274 (2021), no. 1346, vi+123. MR 4341338, DOI 10.1090/memo/1346
  • Blair Davey, Jonathan Hill, and Svitlana Mayboroda, Fundamental matrices and Green matrices for non-homogeneous elliptic systems, Publ. Mat. 62 (2018), no. 2, 537–614, DOI 10.5565/PUBLMAT6221807.
  • G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J. 39 (1990), no. 3, 831–845, DOI 10.1512/iumj.1990.39.39040.
  • Guy David and Svitlana Mayboroda, Good elliptic operators on Cantor sets, Adv. Math. 383 (2021), Paper No. 107687, 21. MR 4235201, DOI 10.1016/j.aim.2021.107687
  • Guy David and Svitlana Mayboroda, Harmonic measure is absolutely continuous with respect to the Hausdorff measure on all low-dimensional uniformly rectifiable sets, Preprint, arXiv:2006.14661.
  • Martin Dindos, Stefanie Petermichl, and Jill Pipher, The $L^p$ Dirichlet problem for second order elliptic operators and a $p$-adapted square function, J. Funct. Anal. 249 (2007), no. 2, 372–392, DOI 10.1016/j.jfa.2006.11.012.
  • Martin Dindoš, Stefanie Petermichl, and Jill Pipher, BMO solvability and the $A_\infty$ condition for second order parabolic operators, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 5, 1155–1180, DOI 10.1016/j.anihpc.2016.09.004.
  • Luis Escauriaza, The $L^p$ Dirichlet problem for small perturbations of the Laplacian, Israel J. Math. 94 (1996), 353–366, DOI 10.1007/BF02762711.
  • R. Fefferman, A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator, J. Amer. Math. Soc. 2 (1989), no. 1, 127–135, DOI 10.2307/1990914.
  • Joseph Feneuil, Absolute continuity of the harmonic measure on low dimensional rectifiable sets, Preprint, arXiv:2006.03118.
  • Eugene B. Fabes, David S. Jerison, and Carlos E. Kenig, Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure, Ann. of Math. (2) 119 (1984), no. 1, 121–141, DOI 10.2307/2006966.
  • R. A. Fefferman, C. E. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2) 134 (1991), no. 1, 65–124, DOI 10.2307/2944333.
  • John Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin-New York, 1972. MR 0454006, DOI 10.1007/BFb0060912
  • José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
  • Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR 2305115
  • Steve Hofmann, Carlos Kenig, Svitlana Mayboroda, and Jill Pipher, Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Amer. Math. Soc. 28 (2015), no. 2, 483–529. MR 3300700, DOI 10.1090/S0894-0347-2014-00805-5
  • Steve Hofmann and John L. Lewis, The Dirichlet problem for parabolic operators with singular drift terms, Mem. Amer. Math. Soc. 151 (2001), no. 719, viii+113. MR 1828387, DOI 10.1090/memo/0719
  • Steve Hofmann and Svitlana Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), no. 1, 37–116, DOI 10.1007/s00208-008-0295-3.
  • Steve Hofmann and José María Martell, $A_\infty$ estimates via extrapolation of Carleson measures and applications to divergence form elliptic operators, Trans. Amer. Math. Soc. 364 (2012), no. 1, 65–101, DOI 10.1090/S0002-9947-2011-05397-3.
  • Steve Hofmann and José María Martell, Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 3, 577–654 (English, with English and French summaries). MR 3239100, DOI 10.24033/asens.2223
  • Steve Hofmann, José María Martell, and Svitlana Mayboroda, Transference of scale-invariant estimates from Lipschitz to non-tangentially accessible to uniformly rectifiable domains, Preprint, https://arxiv.org/abs/1904.13116v2.
  • Steve Hofmann, José María Martell, Svitlana Mayboroda, Tatiana Toro, and Zihui Zhao, Uniform rectifiablity and elliptic operators satisfying a carleson measure condition, part i: The small constant case. Preprint. August 2019. arXiv:1908.03161.
  • Steve Hofmann, José María Martell, Svitlana Mayboroda, Tatiana Toro, and Zihui Zhao. Uniform rectifiablity and elliptic operators satisfying a carleson measure condition, part ii: The large constant case. Preprint. August 2019. arXiv:1710.06157.
  • Steve Hofmann, José María Martell, and Tatiana Toro, General divergence form elliptic operators on domains with adr boundaries, and on 1-sided nta domains. Work in progress. 2014.
  • Steve Hofmann, José María Martell, and Ignacio Uriarte-Tuero, Uniform rectifiability and harmonic measure, II: Poisson kernels in $L^p$ imply uniform rectifiability, Duke Math. J. 163 (2014), no. 8, 1601–1654. MR 3210969, DOI 10.1215/00127094-2713809
  • L. D. Ivanov, On sets of analytic capacity zero, Linear and complex analysis problem book, Lecture Notes in Mathematics, vol. 1043, Springer-Verlag, Berlin, 1984, pp. xviii+720 199 research problems, DOI 10.1007/BFb0072183.
  • David S. Jerison and Carlos E. Kenig, The Dirichlet problem in nonsmooth domains, Ann. of Math. (2) 113(2):367–382, 1981. doi:10.2307/2006988.
  • C. Kenig, H. Koch, J. Pipher, and T. Toro, A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations, Adv. Math. 153 (2000), no. 2, 231–298, DOI 10.1006/aima.1999.1899.
  • C. Kenig, B. Kirchheim, J. Pipher, and T. Toro, Square functions and the $A_\infty$ property of elliptic measures, J. Geom. Anal. 26 (2016), no. 3, 2383–2410, DOI 10.1007/s12220-015-9630-6.
  • Carlos E. Kenig and Jill Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ. Mat. 45 (2001), no. 1, 199–217, DOI 10.5565/PUBLMAT_{4}5101_{0}9.
  • John L. Lewis and Margaret A. M. Murray, The method of layer potentials for the heat equation in time-varying domains, Mem. Amer. Math. Soc. 114 (1995), no. 545, viii+157. MR 1323804, DOI 10.1090/memo/0545
  • Luciano Modica and Stefano Mortola, Construction of a singular elliptic-harmonic measure, Manuscripta Math. 33 (1980/81), no. 1, 81–98, DOI 10.1007/BF01298340.
  • Juan José Marín, José María Martell, and Marius Mitrea, The generalized Hölder and Morrey-Campanato Dirichlet problems for elliptic systems in the upper half-space, Potential Anal. 53 (2020), no. 3, 947–976, DOI 10.1007/s11118-019-09793-9.
  • S. Mayboroda and B. Poggi, Carleson perturbations of elliptic operators on domains with low dimensional boundaries, J. Funct. Anal. 280 (2021), no. 8, Paper No. 108930, 91. MR 4207311, DOI 10.1016/j.jfa.2021.108930
  • Emmanouil Milakis, Jill Pipher, and Tatiana Toro, Perturbations of elliptic operators in chord arc domains, Harmonic analysis and partial differential equations, Contemp. Math., vol. 612, Amer. Math. Soc., Providence, RI, 2014, pp. 143–161 DOI 10.1090/conm/612/12229.
  • Emmanouil Milakis and Tatiana Toro, Divergence form operators in Reifenberg flat domains, Math. Z. 264 (2010), no. 1, 15–41, DOI 10.1007/s00209-008-0450-2.
  • Bruno Poggi, Failure to slide: a brief note on the interplay between the Kenig-Pipher condition and the absolute continuity of elliptic measures, Preprint, arXiv:1912.10115.
  • Stephen W. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces, Trans. Amer. Math. Soc. 311 (1989), no. 2, 501–513, DOI 10.2307/2001139.
  • Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 31B25, 35J25, 35J70
  • Retrieve articles in all journals with MSC (2000): 31B25, 35J25, 35J70
Additional Information
  • Joseph Feneuil
  • Affiliation: Laboratoire de mathématiques d’Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
  • MR Author ID: 1119999
  • ORCID: 0000-0001-5505-4450
  • Email: joseph.feneuil@gmail.com
  • Bruno Poggi
  • Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
  • MR Author ID: 1339605
  • Email: bgpoggi.math@gmail.com
  • Received by editor(s): June 7, 2021
  • Published electronically: August 24, 2022
  • Additional Notes: J.F. was partially supported by the Simons Foundation grant 601941, GD. B.P. was supported by the University of Minnesota Doctoral Dissertation Fellowship grant and in part by the Simons Collaborations in MPS 563916, SM. The authors would like to thank Svitlana Mayboroda and Max Engelstein for insightful conversations
  • © Copyright 2022 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 375 (2022), 7553-7599
  • MSC (2000): Primary 31B25, 35J25, 35J70
  • DOI: https://doi.org/10.1090/tran/8635