Green 2-functors
HTML articles powered by AMS MathViewer
- by Ivo Dell’Ambrogio PDF
- Trans. Amer. Math. Soc. 375 (2022), 7783-7829 Request permission
Abstract:
We extend the theory of Mackey 2-functors provided by Balmer and Dell’Ambrogio [Mackey 2-functors and Mackey 2-motives, European Mathematical Society (EMS), Zürich, 2020] by defining the appropriate notion of rings, namely Green 2-functors. After providing the first results of our theory and abundant examples, we show how all classical Green functors familiar from representation theory and topology arise by decategorification, in various ways, of some Green 2-functor occurring in Nature.References
- Adriana Balan, On Hopf adjunctions, Hopf monads and Frobenius-type properties, Appl. Categ. Structures 25 (2017), no. 5, 747–774. MR 3704283, DOI 10.1007/s10485-016-9428-0
- Clark Barwick, Spectral Mackey functors and equivariant algebraic $K$-theory (I), Adv. Math. 304 (2017), 646–727. MR 3558219, DOI 10.1016/j.aim.2016.08.043
- Paul Balmer and Ivo Dell’Ambrogio, Mackey 2-functors and Mackey 2-motives, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, [2020] ©2020. MR 4192744, DOI 10.4171/209
- Paul Balmer and Ivo Dell’Ambrogio. Cohomological Mackey 2-functors. To appear in J. Inst. Math. Jussieu. Preprint https://arxiv.org/abs/2103.03974, 2021.
- Paul Balmer and Ivo Dell’Ambrogio, Green equivalences in equivariant mathematics, Math. Ann. 379 (2021), no. 3-4, 1315–1342. MR 4238265, DOI 10.1007/s00208-021-02145-2
- Paul Balmer, Ivo Dell’Ambrogio, and Beren Sanders, Restriction to finite-index subgroups as étale extensions in topology, KK-theory and geometry, Algebr. Geom. Topol. 15 (2015), no. 5, 3025–3047. MR 3426702, DOI 10.2140/agt.2015.15.3025
- Paul Balmer, Ivo Dell’Ambrogio, and Beren Sanders, Grothendieck-Neeman duality and the Wirthmüller isomorphism, Compos. Math. 152 (2016), no. 8, 1740–1776. MR 3542492, DOI 10.1112/S0010437X16007375
- Clark Barwick, Saul Glasman, and Jay Shah, Spectral Mackey functors and equivariant algebraic $K$-theory, II, Tunis. J. Math. 2 (2020), no. 1, 97–146. MR 3933393, DOI 10.2140/tunis.2020.2.97
- Alain Bruguières, Steve Lack, and Alexis Virelizier, Hopf monads on monoidal categories, Adv. Math. 227 (2011), no. 2, 745–800. MR 2793022, DOI 10.1016/j.aim.2011.02.008
- Serge Bouc, Green functors and $G$-sets, Lecture Notes in Mathematics, vol. 1671, Springer-Verlag, Berlin, 1997. MR 1483069, DOI 10.1007/BFb0095821
- Serge Bouc, Biset functors for finite groups, Lecture Notes in Mathematics, vol. 1990, Springer-Verlag, Berlin, 2010. MR 2598185, DOI 10.1007/978-3-642-11297-3
- A. Carboni, G. M. Kelly, R. F. C. Walters, and R. J. Wood, Cartesian bicategories II, Theory Appl. Categ. 19 (2007), 93–124. MR 3656673
- Aurelio Carboni, Stephen Lack, and R. F. C. Walters, Introduction to extensive and distributive categories, J. Pure Appl. Algebra 84 (1993), no. 2, 145–158. MR 1201048, DOI 10.1016/0022-4049(93)90035-R
- Alexander S. Corner, A universal characterisation of codescent objects, Theory Appl. Categ. 34 (2019), 684–713. MR 4011808
- Ivo Dell’Ambrogio, Equivariant Kasparov theory of finite groups via Mackey functors, J. Noncommut. Geom. 8 (2014), no. 3, 837–871. MR 3261603, DOI 10.4171/JNCG/172
- Ivo Dell’Ambrogio, Axiomatic representation theory of finite groups by way of groupoids, Equivariant topology and derived algebra, London Math. Soc. Lecture Note Ser., vol. 474, Cambridge Univ. Press, Cambridge, 2022, pp. 39–99. MR 4327098
- Ivo Dell’Ambrogio and James Huglo, On the comparison of spans and bisets, Cahiers Topologie Géom. Différentielle Catég., 62 (2021), no. 1, 63–104.
- Andreas W. M. Dress, Contributions to the theory of induced representations, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 183–240. MR 0384917
- Brian Day and Ross Street, Monoidal bicategories and Hopf algebroids, Adv. Math. 129 (1997), no. 1, 99–157. MR 1458415, DOI 10.1006/aima.1997.1649
- Ivo Dell’Ambrogio and Gonçalo Tabuada, A Quillen model for classical Morita theory and a tensor categorification of the Brauer group, J. Pure Appl. Algebra 218 (2014), no. 12, 2337–2355. MR 3227306, DOI 10.1016/j.jpaa.2014.04.004
- Nora Ganter, Global Mackey functors with operations and n-special lambda rings. Preprint https://arxiv.org/abs/1301.4616v1, 2013.
- R. Gordon, A. J. Power, and Ross Street, Coherence for tricategories, Mem. Amer. Math. Soc. 117 (1995), no. 558, vi+81. MR 1261589, DOI 10.1090/memo/0558
- Moritz Groth, Kate Ponto, and Michael Shulman, The additivity of traces in monoidal derivators, J. K-Theory 14 (2014), no. 3, 422–494. MR 3349323, DOI 10.1017/is014005011jkt262
- Alexander E. Hoffnung, Spans in 2-categories: A monoidal tricategory. Preprint arXiv:math/1112.0560, 2011.
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Chris Heunen and Jamie Vicary, Categories for quantum theory, Oxford Graduate Texts in Mathematics, vol. 28, Oxford University Press, Oxford, 2019. An introduction. MR 3971584, DOI 10.1093/oso/9780198739623.001.0001
- André Joyal and Ross Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Algebra 71 (1991), no. 1, 43–51. MR 1107651, DOI 10.1016/0022-4049(91)90039-5
- Niles Johnson and Donald Yau, 2-dimensional categories, Oxford University Press, Oxford, 2021. MR 4261588, DOI 10.1093/oso/9780198871378.001.0001
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- Joachim Kock, Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, vol. 59, Cambridge University Press, Cambridge, 2004. MR 2037238
- Aaron D. Lauda, Frobenius algebras and ambidextrous adjunctions, Theory Appl. Categ. 16 (2006), No. 4, 84–122. MR 2210667
- L. Gaunce Jr Lewis, The theory of Green functors. Unpublished mimeographed notes, available online, 1980.
- L. Gaunce Lewis Jr. and Michael A. Mandell, Equivariant universal coefficient and Künneth spectral sequences, Proc. London Math. Soc. (3) 92 (2006), no. 2, 505–544. MR 2205726, DOI 10.1112/S0024611505015492
- Fosco Loregian, (Co)end calculus, London Mathematical Society Lecture Note Series, vol. 468, Cambridge University Press, Cambridge, 2021. MR 4274071, DOI 10.1017/9781108778657
- Paddy McCrudden, Balanced coalgebroids, Theory Appl. Categ. 7 (2000), No. 6, 71–147. MR 1764504
- Hiroyuki Nakaoka, Biset functors as module Mackey functors and its relation to derivators, Comm. Algebra 44 (2016), no. 12, 5105–5148. MR 3520267, DOI 10.1080/00927872.2016.1147572
- Hiroyuki Nakaoka, A Mackey-functor theoretic interpretation of biset functors, Adv. Math. 289 (2016), 603–684. MR 3439696, DOI 10.1016/j.aim.2015.11.024
- Elango Panchadcharam and Ross Street, Mackey functors on compact closed categories, J. Homotopy Relat. Struct. 2 (2007), no. 2, 261–293. MR 2369169
- Mariano Suarez-Alvarez, The Hilton-Heckmann argument for the anti-commutativity of cup products, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2241–2246. MR 2052399, DOI 10.1090/S0002-9939-04-07409-X
- Beren Sanders, A characterization of finite étale morphisms in tensor triangular geometry Article in preparation, 2021.
- Ross Street, The monoidal centre as a limit, Theory Appl. Categ. 13 (2004), No. 13, 184–190. MR 2116332
- Peter Webb, A guide to Mackey functors, Handbook of algebra, Vol. 2, Handb. Algebr., vol. 2, Elsevier/North-Holland, Amsterdam, 2000, pp. 805–836. MR 1759612, DOI 10.1016/S1570-7954(00)80044-3
- Charles A. Weibel, The $K$-book, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, RI, 2013. An introduction to algebraic $K$-theory. MR 3076731, DOI 10.1090/gsm/145
Additional Information
- Ivo Dell’Ambrogio
- Affiliation: Univ. Lille, CNRS, UMR 8524 – Laboratoire Paul Painlevé, F-59000 Lille, France
- MR Author ID: 832529
- Email: ivo.dell-ambrogio@univ-lille.fr
- Received by editor(s): July 21, 2021
- Received by editor(s) in revised form: February 15, 2022, and February 22, 2022
- Published electronically: September 2, 2022
- Additional Notes: The author was supported by Project ANR ChroK (ANR-16-CE40-0003) and Labex CEMPI (ANR-11-LABX-0007-01)
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 7783-7829
- MSC (2020): Primary 20J05, 18B40, 18N10, 19A22
- DOI: https://doi.org/10.1090/tran/8681