The projective cover of tableau-cyclic indecomposable $H_n(0)$-modules
HTML articles powered by AMS MathViewer
- by Seung-Il Choi, Young-Hun Kim, Sun-Young Nam and Young-Tak Oh PDF
- Trans. Amer. Math. Soc. 375 (2022), 7747-7782 Request permission
Abstract:
Let $\alpha$ be a composition of $n$ and $\sigma$ a permutation in $\mathfrak {S}_{\ell (\alpha )}$. This paper concerns the projective covers of $H_n(0)$-modules $\mathcal {V}_\alpha$, $X_\alpha$, and $\mathbf {S}^\sigma _{\alpha }$ whose images under the quasisymmetric characteristic are the dual immaculate quasisymmetric function, the extended Schur function, and the quasisymmetric Schur function when $\sigma$ is the identity, respectively. First, we show that the projective cover of $\mathcal {V}_\alpha$ is the projective indecomposable module $\mathbf {P}_\alpha$ due to Norton, and $X_\alpha$ and the $\phi$-twist of the canonical submodule $\mathbf {S}^{\sigma }_{\beta ,C}$ of $\mathbf {S}^\sigma _{\beta }$ for $(\beta ,\sigma )$’s satisfying suitable conditions appear as homomorphic images of $\mathcal {V}_\alpha$. Second, we introduce a combinatorial model for the $\phi$-twist of $\mathbf {S}^\sigma _{\alpha }$ and derive a series of surjections starting from $\mathbf {P}_\alpha$ to the $\phi$-twist of $\mathbf {S}^\mathrm {id}_{\alpha ,C}$. Finally, we construct the projective cover of every indecomposable direct summand $\mathbf {S}^\sigma _{\alpha , E}$ of $\mathbf {S}^\sigma _{\alpha }$. As a byproduct, we give a characterization of triples $(\sigma ,\alpha ,E)$ such that the projective cover of $\mathbf {S}^\sigma _{\alpha ,E}$ is indecomposable.References
- Semi Assaf and Dominic Searles, Kohnert polynomials, Experiment. Math., pages 1–27, 2019.
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- Chris Berg, Nantel Bergeron, Franco Saliola, Luis Serrano, and Mike Zabrocki, A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions, Canad. J. Math. 66 (2014), no. 3, 525–565. MR 3194160, DOI 10.4153/CJM-2013-013-0
- Chris Berg, Nantel Bergeron, Franco Saliola, Luis Serrano, and Mike Zabrocki, Indecomposable modules for the dual immaculate basis of quasi-symmetric functions, Proc. Amer. Math. Soc. 143 (2015), no. 3, 991–1000. MR 3293717, DOI 10.1090/S0002-9939-2014-12298-2
- Seung-Il Choi, Young-Hun Kim, Sun-Young Nam, and Young-Tak Oh, Modules of the 0-Hecke algebra arising from standard permuted composition tableaux, J. Combin. Theory Ser. A 179 (2021), Paper No. 105389, 34. MR 4193062, DOI 10.1016/j.jcta.2020.105389
- Tom Denton, A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group, Electron. J. Combin. 18 (2011), no. 1, Paper 28, 20. MR 2776804
- Gérard Duchamp, Daniel Krob, Bernard Leclerc, and Jean-Yves Thibon, Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à $q=0$, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 2, 107–112 (French, with English and French summaries). MR 1373744
- Matthew Fayers, 0-Hecke algebras of finite Coxeter groups, J. Pure Appl. Algebra 199 (2005), no. 1-3, 27–41. MR 2134290, DOI 10.1016/j.jpaa.2004.12.001
- James Haglund, Sarah Mason, and Jeffrey Remmel, Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm, J. Algebraic Combin. 38 (2013), no. 2, 285–327. MR 3081647, DOI 10.1007/s10801-012-0404-y
- Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon, Yang-Baxter bases of 0-Hecke algebras and representation theory of 0-Ariki-Koike-Shoji algebras, Adv. Math. 205 (2006), no. 2, 504–548. MR 2258265, DOI 10.1016/j.aim.2005.07.016
- Jia Huang, A tableau approach to the representation theory of 0-Hecke algebras, Ann. Comb. 20 (2016), no. 4, 831–868. MR 3572389, DOI 10.1007/s00026-016-0338-5
- Sebastian König, The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions, Algebr. Comb. 2 (2019), no. 5, 735–751. MR 4023564, DOI 10.5802/alco.58
- Daniel Krob and Jean-Yves Thibon, Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at $q=0$, J. Algebraic Combin. 6 (1997), no. 4, 339–376. MR 1471894, DOI 10.1023/A:1008673127310
- Kurt Luoto, Stefan Mykytiuk, and Stephanie van Willigenburg, An introduction to quasisymmetric Schur functions, SpringerBriefs in Mathematics, Springer, New York, 2013. Hopf algebras, quasisymmetric functions, and Young composition tableaux. MR 3097867, DOI 10.1007/978-1-4614-7300-8
- P. N. Norton, $0$-Hecke algebras, J. Austral. Math. Soc. Ser. A 27 (1979), no. 3, 337–357. MR 532754, DOI 10.1017/S1446788700012453
- Dominic Searles, Indecomposable $0$-Hecke modules for extended Schur functions, Proc. Amer. Math. Soc. 148 (2020), no. 5, 1933–1943. MR 4078078, DOI 10.1090/proc/14879
- Vasu V. Tewari and Stephanie J. van Willigenburg, Modules of the 0-Hecke algebra and quasisymmetric Schur functions, Adv. Math. 285 (2015), 1025–1065. MR 3406520, DOI 10.1016/j.aim.2015.08.012
- V. Tewari and S. van Willigenburg, Permuted composition tableaux, 0-Hecke algebra and labeled binary trees, J. Combin. Theory Ser. A 161 (2019), 420–452. MR 3861786, DOI 10.1016/j.jcta.2018.09.003
Additional Information
- Seung-Il Choi
- Affiliation: Center for Quantum Structures in Modules and Spaces, Seoul National University, Seoul 08826, Republic of Korea
- MR Author ID: 1081959
- ORCID: 0000-0003-1734-6748
- Email: ignatioschoi@snu.ac.kr
- Young-Hun Kim
- Affiliation: Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea & Research Institute for Basic Science, Sogang University, Seoul 04107, Republic of Korea
- MR Author ID: 1198806
- ORCID: 0000-0002-3722-7335
- Email: ykim.math@gmail.com
- Sun-Young Nam
- Affiliation: Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea
- MR Author ID: 940041
- Email: synam.math@gmail.com
- Young-Tak Oh
- Affiliation: Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea
- MR Author ID: 681051
- Email: ytoh@sogang.ac.kr
- Received by editor(s): August 11, 2020
- Received by editor(s) in revised form: February 15, 2022
- Published electronically: September 2, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 7747-7782
- MSC (2020): Primary 20C08, 05E05, 05E10
- DOI: https://doi.org/10.1090/tran/8693