Generic properties of Steklov eigenfunctions
HTML articles powered by AMS MathViewer
- by Lihan Wang PDF
- Trans. Amer. Math. Soc. 375 (2022), 8241-8255 Request permission
Abstract:
Let $M^n$ be a smooth compact manifold with smooth boundary. We show that for a generic $C^k$ metric on ${}\mkern 3mu\overline {\mkern -3muM^n}$ with $k>n-1$, the non-zero Steklov eigenvalues are simple. Moreover, we prove that the non-constant Steklov eigenfunctions have zero as a regular value and are Morse functions on the boundary for such generic metric. These results generalize the celebrated results on Laplacians by Uhlenbeck to the Steklov setting.References
- W. Arendt, A. F. M. ter Elst, J. B. Kennedy, and M. Sauter, The Dirichlet-to-Neumann operator via hidden compactness, J. Funct. Anal. 266 (2014), no. 3, 1757–1786. MR 3146835, DOI 10.1016/j.jfa.2013.09.012
- Alberto-P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980) Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65–73. MR 590275
- Yaiza Canzani, On the multiplicity of eigenvalues of conformally covariant operators, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 3, 947–970 (English, with English and French summaries). MR 3330160, DOI 10.5802/aif.2870
- Mattias Dahl, Dirac eigenvalues for generic metrics on three-manifolds, Ann. Global Anal. Geom. 24 (2003), no. 1, 95–100. MR 1990087, DOI 10.1023/A:1024231524848
- Alberto Enciso and Daniel Peralta-Salas, Nondegeneracy of the eigenvalues of the Hodge Laplacian for generic metrics on 3-manifolds, Trans. Amer. Math. Soc. 364 (2012), no. 8, 4207–4224. MR 2912451, DOI 10.1090/S0002-9947-2012-05496-1
- Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011), no. 5, 4011–4030. MR 2770439, DOI 10.1016/j.aim.2010.11.007
- Ailana Fraser and Richard Schoen, Minimal surfaces and eigenvalue problems, Geometric analysis, mathematical relativity, and nonlinear partial differential equations, Contemp. Math., vol. 599, Amer. Math. Soc., Providence, RI, 2013, pp. 105–121. MR 3202476, DOI 10.1090/conm/599/11927
- Ailana Fraser and Richard Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, Invent. Math. 203 (2016), no. 3, 823–890. MR 3461367, DOI 10.1007/s00222-015-0604-x
- Ailana Fraser and Richard Schoen, Shape optimization for the Steklov problem in higher dimensions, Adv. Math. 348 (2019), 146–162. MR 3925929, DOI 10.1016/j.aim.2019.03.011
- Ailana Fraser and Richard Schoen, Some results on higher eigenvalue optimization, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 151, 22. MR 4137805, DOI 10.1007/s00526-020-01802-9
- Allan Greenleaf, Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev. 51 (2009), no. 1, 3–33. MR 2481110, DOI 10.1137/080716827
- Nicola Garofalo and Fang-Hua Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), no. 3, 347–366. MR 882069, DOI 10.1002/cpa.3160400305
- Alexandre Girouard, Mikhail Karpukhin, Michael Levitin, and Iosif Polterovich, The Dirichlet-to-Neumann map, the boundary Laplacian, and Hörmander’s rediscovered manuscript, J. Spectr. Theory 12 (2022), no. 1, 195–225. MR 4404812, DOI 10.4171/jst/399
- Alexandre Girouard and Iosif Polterovich, Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory 7 (2017), no. 2, 321–359. MR 3662010, DOI 10.4171/JST/164
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Jindřich Nečas, Direct methods in the theory of elliptic equations, Springer Monographs in Mathematics, Springer, Heidelberg, 2012. Translated from the 1967 French original by Gerard Tronel and Alois Kufner; Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G. Simader. MR 3014461, DOI 10.1007/978-3-642-10455-8
- W. Stekloff, Sur les problèmes fondamentaux de la physique mathématique (suite et fin), Ann. Sci. École Norm. Sup. (3) 19 (1902), 455–490 (French). MR 1509018, DOI 10.24033/asens.516
- Ao Sun, Zhichao Wang, and Xin Zhou, Multiplicity one for min-max theory in compact manifolds with boundary and its applications, https://arxiv.org/abs/2011.04136 (2020).
- John Sylvester and Gunther Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math. 39 (1986), no. 1, 91–112. MR 820341, DOI 10.1002/cpa.3160390106
- K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059–1078. MR 464332, DOI 10.2307/2374041
- Xin Zhou, On the multiplicity one conjecture in min-max theory, Ann. of Math. (2) 192 (2020), no. 3, 767–820. MR 4172621, DOI 10.4007/annals.2020.192.3.3
Additional Information
- Lihan Wang
- Affiliation: Department of Mathematics and Statistics, CSULB, Long Beach, California 90840
- MR Author ID: 1036689
- Email: lihan.wang@csulb.edu
- Received by editor(s): December 15, 2021
- Received by editor(s) in revised form: April 22, 2022, and June 16, 2022
- Published electronically: August 30, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 8241-8255
- MSC (2020): Primary 58J40, 58J50, 58D17; Secondary 35B38, 35P05, 35R01
- DOI: https://doi.org/10.1090/tran/8769