Nonsymmetric Macdonald polynomials via integrable vertex models
HTML articles powered by AMS MathViewer
- by Alexei Borodin and Michael Wheeler PDF
- Trans. Amer. Math. Soc. 375 (2022), 8353-8397 Request permission
Abstract:
Starting from an integrable rank-$n$ vertex model, we construct an explicit family of partition functions indexed by compositions $\mu = (\mu _1,\dots ,\mu _n)$. Using the Yang–Baxter algebra of the model and a certain rotation operation that acts on our partition functions, we show that they are eigenfunctions of the Cherednik–Dunkl operators $Y_i$ for all $1 \leqslant i \leqslant n$, and are thus equal to nonsymmetric Macdonald polynomials $E_{\mu }$. Our partition functions have the combinatorial interpretation of ensembles of coloured lattice paths which traverse a cylinder. Applying a simple bijection to such path ensembles, we show how to recover the well-known combinatorial formula for $E_{\mu }$ due to Haglund–Haiman–Loehr.References
- Chikashi Arita, Arvind Ayyer, Kirone Mallick, and Sylvain Prolhac, Generalized matrix ansatz in the multispecies exclusion process—the partially asymmetric case, J. Phys. A 45 (2012), no. 19, 195001, 16. MR 2924494, DOI 10.1088/1751-8113/45/19/195001
- Amol Aggarwal, Dynamical stochastic higher spin vertex models, Selecta Math. (N.S.) 24 (2018), no. 3, 2659–2735. MR 3816514, DOI 10.1007/s00029-018-0411-5
- P. Alexandersson. Non-symmetric Macdonald polynomials and Demazure–Lusztig operators. arXiv:1602.05153, 2016.
- R. J. Baxter. Exactly solved models in statistical mechanics. Courier Corporation, 2007.
- V. V. Bazhanov, Trigonometric solutions of triangle equations and classical Lie algebras, Phys. Lett. B 159 (1985), no. 4-6, 321–324. MR 806529, DOI 10.1016/0370-2693(85)90259-X
- Guillaume Barraquand, Alexei Borodin, Ivan Corwin, and Michael Wheeler, Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process, Duke Math. J. 167 (2018), no. 13, 2457–2529. MR 3855355, DOI 10.1215/00127094-2018-0019
- A. Borodin, A. Bufetov, and M. Wheeler. Between the stochastic six vertex model and Hall–Littlewood processes. To appear in Journal of Combinatorial Theory Series A, arXiv:1611.09486, 2016.
- Alexei Borodin, Stochastic higher spin six vertex model and Macdonald measures, J. Math. Phys. 59 (2018), no. 2, 023301, 17. MR 3760963, DOI 10.1063/1.5000046
- Alexei Borodin, On a family of symmetric rational functions, Adv. Math. 306 (2017), 973–1018. MR 3581324, DOI 10.1016/j.aim.2016.10.040
- Alexei Borodin, Symmetric elliptic functions, IRF models, and dynamic exclusion processes, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 5, 1353–1421. MR 4081725, DOI 10.4171/jems/947
- Alexei Borodin and Leonid Petrov, Higher spin six vertex model and symmetric rational functions, Selecta Math. (N.S.) 24 (2018), no. 2, 751–874. MR 3782413, DOI 10.1007/s00029-016-0301-7
- Alexei Borodin and Michael Wheeler, Spin $q$-Whittaker polynomials, Adv. Math. 376 (2021), Paper No. 107449, 50. MR 4178921, DOI 10.1016/j.aim.2020.107449
- A. Borodin and M. Wheeler. Coloured stochastic vertex models and their spectral theory. arXiv:1808.01866, 2018.
- Luigi Cantini, Jan de Gier, and Michael Wheeler, Matrix product formula for Macdonald polynomials, J. Phys. A 48 (2015), no. 38, 384001, 25. MR 3400909, DOI 10.1088/1751-8113/48/38/384001
- Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI 10.2307/2118632
- Ivan Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 10 (1995), 483–515. MR 1358032, DOI 10.1155/S1073792895000341
- I. Cherednik. Introduction to double Hecke algebras. arXiv:math/0404307, 2004.
- Sylvie Corteel, Olya Mandelshtam, and Lauren Williams, From multiline queues to Macdonald polynomials via the exclusion process, Sém. Lothar. Combin. 82B (2020), Art. 97, 12. MR 4098318
- Ivan Corwin and Leonid Petrov, Stochastic higher spin vertex models on the line, Comm. Math. Phys. 343 (2016), no. 2, 651–700. MR 3477349, DOI 10.1007/s00220-015-2479-5
- Martin R. Evans, Pablo A. Ferrari, and Kirone Mallick, Matrix representation of the stationary measure for the multispecies TASEP, J. Stat. Phys. 135 (2009), no. 2, 217–239. MR 2505734, DOI 10.1007/s10955-009-9696-2
- Pavel I. Etingof and Alexander A. Kirillov Jr., Macdonald’s polynomials and representations of quantum groups, Math. Res. Lett. 1 (1994), no. 3, 279–296. MR 1302644, DOI 10.4310/MRL.1994.v1.n3.a1
- L. D. Faddeev, How the algebraic Bethe ansatz works for integrable models, Symétries quantiques (Les Houches, 1995) North-Holland, Amsterdam, 1998, pp. 149–219. MR 1616371
- Pablo A. Ferrari and James B. Martin, Stationary distributions of multi-type totally asymmetric exclusion processes, Ann. Probab. 35 (2007), no. 3, 807–832. MR 2319708, DOI 10.1214/009117906000000944
- L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebraic analysis, Vol. I, Academic Press, Boston, MA, 1988, pp. 129–139. MR 992450
- Alexandr Garbali, Jan de Gier, and Michael Wheeler, A new generalisation of Macdonald polynomials, Comm. Math. Phys. 352 (2017), no. 2, 773–804. MR 3627413, DOI 10.1007/s00220-016-2818-1
- Leh-Hun Gwa and Herbert Spohn, Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett. 68 (1992), no. 6, 725–728. MR 1147356, DOI 10.1103/PhysRevLett.68.725
- Alexandr Garbali and Michael Wheeler, Modified Macdonald polynomials and integrability, Comm. Math. Phys. 374 (2020), no. 3, 1809–1876. MR 4076089, DOI 10.1007/s00220-020-03680-w
- J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math. 130 (2008), no. 2, 359–383. MR 2405160, DOI 10.1353/ajm.2008.0015
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- Michio Jimbo, Quantum $R$ matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), no. 4, 537–547. MR 824090, DOI 10.1007/BF01221646
- V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993. MR 1245942, DOI 10.1017/CBO9780511628832
- Christian Korff, Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra, Comm. Math. Phys. 318 (2013), no. 1, 173–246. MR 3017067, DOI 10.1007/s00220-012-1630-9
- P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, Yang-Baxter equations and representation theory. I, Lett. Math. Phys. 5 (1981), no. 5, 393–403. MR 649704, DOI 10.1007/BF02285311
- I. G. Macdonald. A new class of symmetric functions. Publ. IRMA Strasbourg, 372 (1988), 131–171.
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Dan Marshall, Symmetric and nonsymmetric Macdonald polynomials, Ann. Comb. 3 (1999), no. 2-4, 385–415. On combinatorics and statistical mechanics. MR 1772356, DOI 10.1007/BF01608794
- Katsuhisa Mimachi and Masatoshi Noumi, A reproducing kernel for nonsymmetric Macdonald polynomials, Duke Math. J. 91 (1998), no. 3, 621–634. MR 1604183, DOI 10.1215/S0012-7094-98-09124-4
- Eric M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75–121. MR 1353018, DOI 10.1007/BF02392487
- S. Prolhac, M. R. Evans, and K. Mallick, The matrix product solution of the multispecies partially asymmetric exclusion process, J. Phys. A 42 (2009), no. 16, 165004, 25. MR 2539272, DOI 10.1088/1751-8113/42/16/165004
- Arun Ram and Martha Yip, A combinatorial formula for Macdonald polynomials, Adv. Math. 226 (2011), no. 1, 309–331. MR 2735761, DOI 10.1016/j.aim.2010.06.022
- Siddhartha Sahi, Interpolation, integrality, and a generalization of Macdonald’s polynomials, Internat. Math. Res. Notices 10 (1996), 457–471. MR 1399411, DOI 10.1155/S107379289600030X
- N. V. Tsilevich, The quantum inverse scattering problem method for the $q$-boson model, and symmetric functions, Funktsional. Anal. i Prilozhen. 40 (2006), no. 3, 53–65, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 40 (2006), no. 3, 207–217. MR 2265685, DOI 10.1007/s10688-006-0032-1
- Michael Wheeler and Paul Zinn-Justin, Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons, Adv. Math. 299 (2016), 543–600. MR 3519476, DOI 10.1016/j.aim.2016.05.010
Additional Information
- Alexei Borodin
- Affiliation: Department of Mathematics, MIT, Cambridge –and– Institute for Information Transmission Problems, Moscow, Russia
- MR Author ID: 604024
- Email: borodin@math.mit.edu
- Michael Wheeler
- Affiliation: School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
- MR Author ID: 807051
- Email: wheelerm@unimelb.edu.au
- Received by editor(s): June 7, 2019
- Received by editor(s) in revised form: September 29, 2020
- Published electronically: September 28, 2022
- Additional Notes: The work of the first author was partially supported by the NSF grants DMS-1607901 and DMS-1664619. The second author was partially supported by the ARC grant DE160100958.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 8353-8397
- MSC (2020): Primary 05E05, 82B23
- DOI: https://doi.org/10.1090/tran/8309