Invariance of the Gibbs measures for periodic generalized Korteweg-de Vries equations
HTML articles powered by AMS MathViewer
- by Andreia Chapouto and Nobu Kishimoto PDF
- Trans. Amer. Math. Soc. 375 (2022), 8483-8528 Request permission
Abstract:
In this paper, we study the Gibbs measures for periodic generalized Korteweg-de Vries equations (gKdV) with quartic or higher nonlinearities. In order to bypass the analytical ill-posedness of the equation in the Sobolev support of the Gibbs measures, we establish deterministic well-posedness of the gauged gKdV equations within the framework of the Fourier-Lebesgue spaces. Our argument relies on bilinear and trilinear Strichartz estimates adapted to the Fourier-Lebesgue setting. Then, following Bourgain’s invariant measure argument, we construct almost sure global-in-time dynamics and show invariance of the Gibbs measures for the gauged equations. These results can be brought back to the ungauged side by inverting the gauge transformation and exploiting the invariance of the Gibbs measures under spatial translations. We thus complete the program initiated by Bourgain [Comm. Math. Phys. 166 (1994), pp 1–26] on the invariance of the Gibbs measures for periodic gKdV equations.References
- Jiguang Bao and Yifei Wu, Global well-posedness for the periodic generalized Korteweg–de Vries equations, Indiana Univ. Math. J. 66 (2017), no. 5, 1797–1825. MR 3718441, DOI 10.1512/iumj.2017.66.6135
- Árpád Bényi and Tadahiro Oh, Modulation spaces, Wiener amalgam spaces, and Brownian motions, Adv. Math. 228 (2011), no. 5, 2943–2981. MR 2838066, DOI 10.1016/j.aim.2011.07.023
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209–262. MR 1215780, DOI 10.1007/BF01895688
- J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), no. 1, 1–26. MR 1309539, DOI 10.1007/BF02099299
- Jean Bourgain, Invariant measures for the $2$D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, 421–445. MR 1374420, DOI 10.1007/BF02099556
- J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), no. 2, 115–159. MR 1466164, DOI 10.1007/s000290050008
- Jean Bourgain and Aynur Bulut, Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3d case, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1289–1325. MR 3226743, DOI 10.4171/JEMS/461
- Nicolas Burq, Laurent Thomann, and Nikolay Tzvetkov, Long time dynamics for the one dimensional non linear Schrödinger equation, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2137–2198 (English, with English and French summaries). MR 3237443, DOI 10.5802/aif.2825
- Nicolas Burq, Laurent Thomann, and Nikolay Tzvetkov, Remarks on the Gibbs measures for nonlinear dispersive equations, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018), no. 3, 527–597 (English, with English and French summaries). MR 3869074, DOI 10.5802/afst.1578
- Nicolas Burq and Nikolay Tzvetkov, Invariant measure for a three dimensional nonlinear wave equation, Int. Math. Res. Not. IMRN 22 (2007), Art. ID rnm108, 26. MR 2376217, DOI 10.1093/imrn/rnm108
- Nicolas Burq and Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. II. A global existence result, Invent. Math. 173 (2008), no. 3, 477–496. MR 2425134, DOI 10.1007/s00222-008-0123-0
- Eric A. Carlen, Jürg Fröhlich, and Joel Lebowitz, Exponential relaxation to equilibrium for a one-dimensional focusing non-linear Schrödinger equation with noise, Comm. Math. Phys. 342 (2016), no. 1, 303–332. MR 3455152, DOI 10.1007/s00220-015-2511-9
- Andreia Chapouto, A remark on the well-posedness of the modified KDV equation in the Fourier-Lebesgue spaces, Discrete Contin. Dyn. Syst. 41 (2021), no. 8, 3915–3950. MR 4251838, DOI 10.3934/dcds.2021022
- A. Chapouto, A refined well-posedness result for the modified KdV equation in the Fourier-Lebesgue spaces, J. Dyn. Diff. Equ. (2021).
- Michael Christ, James Colliander, and Terrence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293. MR 2018661, DOI 10.1353/ajm.2003.0040
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\Bbb R$ and $\Bbb T$, J. Amer. Math. Soc. 16 (2003), no. 3, 705–749. MR 1969209, DOI 10.1090/S0894-0347-03-00421-1
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal. 211 (2004), no. 1, 173–218. MR 2054622, DOI 10.1016/S0022-1236(03)00218-0
- James Colliander and Tadahiro Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\Bbb T)$, Duke Math. J. 161 (2012), no. 3, 367–414. MR 2881226, DOI 10.1215/00127094-1507400
- Yu Deng, Invariance of the Gibbs measure for the Benjamin-Ono equation, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 5, 1107–1198. MR 3346690, DOI 10.4171/JEMS/528
- Y. Deng, A. R. Nahmod, and H. Yue, Invariant Gibbs measure and global strong solutions for the nonlinear Schrödinger equations in dimensions two, arXiv:1910.08492 [math.AP].
- Yu Deng, Andrea R. Nahmod, and Haitian Yue, Optimal local well-posedness for the periodic derivative nonlinear Schrödinger equation, Comm. Math. Phys. 384 (2021), no. 2, 1061–1107. MR 4259382, DOI 10.1007/s00220-020-03898-8
- Xavier Fernique, Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1698–A1699 (French). MR 266263
- Justin Forlano, Tadahiro Oh, and Yuzhao Wang, Stochastic nonlinear Schrödinger equation with almost space-time white noise, J. Aust. Math. Soc. 109 (2020), no. 1, 44–67. MR 4120796, DOI 10.1017/s1446788719000156
- J. Ginibre, Y. Tsutsumi, and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), no. 2, 384–436. MR 1491547, DOI 10.1006/jfan.1997.3148
- Leonard Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 31–42. MR 0212152
- A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not. (2004), no. 61, 3287–3308.
- Axel Grünrock and Sebastian Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal. 39 (2008), no. 6, 1890–1920. MR 2390318, DOI 10.1137/070689139
- T. Gunaratnam, T. Oh, N. Tzvetkov, and H. Weber, Quasi-invariant Gaussian measures for the nonlinear wave equation in three dimensions, Probab. Math. Phys., To appear.
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
- Sebastian Herr, Daniel Tataru, and Nikolay Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\Bbb T^3)$, Duke Math. J. 159 (2011), no. 2, 329–349. MR 2824485, DOI 10.1215/00127094-1415889
- Yi Hu and Xiaochun Li, Discrete Fourier restriction associated with KdV equations, Anal. PDE 6 (2013), no. 4, 859–892. MR 3092732, DOI 10.2140/apde.2013.6.859
- Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975, pp. 25–70. MR 0407477
- Tosio Kato, On the Korteweg-de Vries equation, Manuscripta Math. 28 (1979), no. 1-3, 89–99. MR 535697, DOI 10.1007/BF01647967
- Hui Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin-New York, 1975. MR 0461643
- Joel L. Lebowitz, Harvey A. Rose, and Eugene R. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys. 50 (1988), no. 3-4, 657–687. MR 939505, DOI 10.1007/BF01026495
- Yvan Martel and Frank Merle, Blow up in finite time and dynamics of blow up solutions for the $L^2$-critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), no. 3, 617–664. MR 1896235, DOI 10.1090/S0894-0347-02-00392-2
- Yvan Martel and Frank Merle, Nonexistence of blow-up solution with minimal $L^2$-mass for the critical gKdV equation, Duke Math. J. 115 (2002), no. 2, 385–408. MR 1944576, DOI 10.1215/S0012-7094-02-11526-9
- Frank Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14 (2001), no. 3, 555–578. MR 1824989, DOI 10.1090/S0894-0347-01-00369-1
- Jean-Christophe Mourrat, Hendrik Weber, and Weijun Xu, Construction of $\Phi ^4_3$ diagrams for pedestrians, From particle systems to partial differential equations, Springer Proc. Math. Stat., vol. 209, Springer, Cham, 2017, pp. 1–46. MR 3746744, DOI 10.1007/978-3-319-66839-0_{1}
- Andrea R. Nahmod, Tadahiro Oh, Luc Rey-Bellet, and Gigliola Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1275–1330. MR 2928851, DOI 10.4171/JEMS/333
- Andrea R. Nahmod, Luc Rey-Bellet, Scott Sheffield, and Gigliola Staffilani, Absolute continuity of Brownian bridges under certain gauge transformations, Math. Res. Lett. 18 (2011), no. 5, 875–887. MR 2875861, DOI 10.4310/MRL.2011.v18.n5.a6
- Takayoshi Ogawa and Yoshio Tsutsumi, Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition, Functional-analytic methods for partial differential equations (Tokyo, 1989) Lecture Notes in Math., vol. 1450, Springer, Berlin, 1990, pp. 236–251. MR 1084613, DOI 10.1007/BFb0084910
- Tadahiro Oh, Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system, SIAM J. Math. Anal. 41 (2009/10), no. 6, 2207–2225. MR 2579711, DOI 10.1137/080738180
- Tadahiro Oh, Invariance of the white noise for KdV, Comm. Math. Phys. 292 (2009), no. 1, 217–236. MR 2540076, DOI 10.1007/s00220-009-0856-7
- Tadahiro Oh, Invariant Gibbs measures and a.s. global well posedness for coupled KdV systems, Differential Integral Equations 22 (2009), no. 7-8, 637–668. MR 2532115
- Tadahiro Oh, Periodic stochastic Korteweg-de Vries equation with additive space-time white noise, Anal. PDE 2 (2009), no. 3, 281–304. MR 2603800, DOI 10.2140/apde.2009.2.281
- Tadahiro Oh, White noise for KdV and mKdV on the circle, Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, B18, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, pp. 99–124. MR 2762393
- Tadahiro Oh, Geordie Richards, and Laurent Thomann, On invariant Gibbs measures for the generalized KdV equations, Dyn. Partial Differ. Equ. 13 (2016), no. 2, 133–153. MR 3520810, DOI 10.4310/DPDE.2016.v13.n2.a3
- Tadahiro Oh, Tristan Robert, Philippe Sosoe, and Yuzhao Wang, Invariant Gibbs dynamics for the dynamical sine-Gordon model, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 5, 1450–1466. MR 4313569, DOI 10.1017/prm.2020.68
- Tadahiro Oh, Philippe Sosoe, and Leonardo Tolomeo, Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus, Invent. Math. 227 (2022), no. 3, 1323–1429. MR 4384196, DOI 10.1007/s00222-021-01080-y
- Tadahiro Oh and Laurent Thomann, A pedestrian approach to the invariant Gibbs measures for the 2-$d$ defocusing nonlinear Schrödinger equations, Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), no. 3, 397–445. MR 3844655, DOI 10.1007/s40072-018-0112-2
- Geordie Richards, Invariance of the Gibbs measure for the periodic quartic gKdV, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016), no. 3, 699–766. MR 3489633, DOI 10.1016/j.anihpc.2015.01.003
- Gigliola Staffilani, On solutions for periodic generalized KdV equations, Internat. Math. Res. Notices 18 (1997), 899–917. MR 1481610, DOI 10.1155/S1073792897000585
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- Laurent Thomann and Nikolay Tzvetkov, Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity 23 (2010), no. 11, 2771–2791. MR 2727169, DOI 10.1088/0951-7715/23/11/003
- Nikolay Tzvetkov, Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ. 3 (2006), no. 2, 111–160. MR 2227040, DOI 10.4310/DPDE.2006.v3.n2.a2
- Nikolay Tzvetkov, Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2543–2604 (English, with English and French summaries). MR 2498359, DOI 10.5802/aif.2422
- N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields 146 (2010), no. 3-4, 481–514. MR 2574736, DOI 10.1007/s00440-008-0197-z
Additional Information
- Andreia Chapouto
- Affiliation: School of Mathematics, The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
- Address at time of publication: Department of Mathematics, University of California, Los Angeles, California 90095
- MR Author ID: 1190711
- Email: chapouto@math.ucla.edu
- Nobu Kishimoto
- Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- MR Author ID: 841241
- Email: nobu@kurims.kyoto-u.ac.jp
- Received by editor(s): April 27, 2021
- Received by editor(s) in revised form: December 20, 2021
- Published electronically: September 28, 2022
- Additional Notes: The first author was supported by the Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh. The second author was supported by JSPS (Grant-in-Aid for Young Researchers (B) no. 16K17626). The authors were also supported by the European Research Council (grant no. 637995 “ProbDynDispEq” and grant no. 864138 “SingStochDispDyn”).
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 8483-8528
- MSC (2020): Primary 35Q53
- DOI: https://doi.org/10.1090/tran/8699