On finitely summable Fredholm modules from Smale spaces
HTML articles powered by AMS MathViewer
- by Dimitris Michail Gerontogiannis PDF
- Trans. Amer. Math. Soc. 375 (2022), 8885-8944 Request permission
Abstract:
We prove that all $K$-homology classes of the stable (and unstable) Ruelle algebra of a Smale space have explicit Fredholm module representatives that are finitely summable on the same smooth subalgebra and with the same degree of summability. The smooth subalgebra is induced by a metric on the underlying Smale space groupoid and fine transversality relations between stable and unstable sets. The degree of summability is related to the fractal dimension of the Smale space. Further, the Fredholm modules are obtained by taking Kasparov products with a fundamental class of the Spanier-Whitehead $K$-duality between the Ruelle algebras. Finally, we obtain general results on stability under holomorphic functional calculus and construct Lipschitz algebras on étale groupoids.References
- Jared E. Anderson and Ian F. Putnam, Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 509–537. MR 1631708, DOI 10.1017/S0143385798100457
- Alfonso Artigue, Self-similar hyperbolicity, Ergodic Theory Dynam. Systems 38 (2018), no. 7, 2422–2446. MR 3846713, DOI 10.1017/etds.2016.139
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484–530. MR 236950, DOI 10.2307/1970715
- M. F. Atiyah, Global theory of elliptic operators, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) Univ. Tokyo Press, Tokyo, 1970, pp. 21–30. MR 0266247
- James C. Becker and Daniel Henry Gottlieb, A history of duality in algebraic topology, History of topology, North-Holland, Amsterdam, 1999, pp. 725–745. MR 1721120, DOI 10.1016/B978-044482375-5/50026-2
- Bruce Blackadar, $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
- Rufus Bowen, Markov partitions for Axiom $\textrm {A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 725–747. MR 277003, DOI 10.2307/2373370
- Rufus Bowen, Markov partitions and minimal sets for Axiom $\textrm {A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 907–918. MR 277002, DOI 10.2307/2373402
- Rufus Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397. MR 282372, DOI 10.1090/S0002-9947-1971-0282372-0
- Michael Brin and Garrett Stuck, Introduction to dynamical systems, Cambridge University Press, Cambridge, 2002. MR 1963683, DOI 10.1017/CBO9780511755316
- Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335–348. MR 454645, DOI 10.2140/pjm.1977.71.335
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR 823176
- A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 207–220. MR 1007407, DOI 10.1017/S0143385700004934
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Michel Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993), no. 2, 241–270 (French, with French summary). MR 1214072, DOI 10.2140/pjm.1993.159.241
- J. Cuntz, A class of $C^{\ast }$-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for $C^{\ast }$-algebras, Invent. Math. 63 (1981), no. 1, 25–40. MR 608527, DOI 10.1007/BF01389192
- Joachim Cuntz, $K$-theory for certain $C^{\ast }$-algebras, Ann. of Math. (2) 113 (1981), no. 1, 181–197. MR 604046, DOI 10.2307/1971137
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
- Robin J. Deeley, Magnus Goffeng, and Allan Yashinski, Smale space $C^*$-algebras have nonzero projections, Proc. Amer. Math. Soc. 148 (2020), no. 4, 1625–1639. MR 4069199, DOI 10.1090/proc/14837
- Robin J. Deeley and Karen R. Strung, Nuclear dimension and classification of $\rm C^*$-algebras associated to Smale spaces, Trans. Amer. Math. Soc. 370 (2018), no. 5, 3467–3485. MR 3766855, DOI 10.1090/tran/7046
- Robin J. Deeley and Karen R. Strung, Group actions on Smale space $C^*$-algebras, Ergodic Theory Dynam. Systems 40 (2020), no. 9, 2368–2398. MR 4130808, DOI 10.1017/etds.2019.11
- Robin J. Deeley and Allan Yashinski, The stable algebra of a Wieler solenoid: inductive limits and $K$-theory, Ergodic Theory Dynam. Systems 40 (2020), no. 10, 2734–2768. MR 4138909, DOI 10.1017/etds.2019.17
- Anton Deitmar and Siegfried Echterhoff, Principles of harmonic analysis, Universitext, Springer, New York, 2009. MR 2457798
- R. G. Douglas, On the smoothness of elements of Ext, Topics in modern operator theory (Timişoara/Herculane, 1980), Operator Theory: Advances and Applications, vol. 2, Birkhäuser, Basel-Boston, Mass., 1981, pp. 63–69. MR 672816
- R. G. Douglas and Dan Voiculescu, On the smoothness of sphere extensions, J. Operator Theory 6 (1981), no. 1, 103–111. MR 637004
- Siegfried Echterhoff, Heath Emerson, and Hyun Jeong Kim, $KK$-theoretic duality for proper twisted actions, Math. Ann. 340 (2008), no. 4, 839–873. MR 2372740, DOI 10.1007/s00208-007-0171-6
- Heath Emerson, Noncommutative Poincaré duality for boundary actions of hyperbolic groups, J. Reine Angew. Math. 564 (2003), 1–33. MR 2021032, DOI 10.1515/crll.2003.090
- Heath Emerson and Bogdan Nica, K-homological finiteness and hyperbolic groups, J. Reine Angew. Math. 745 (2018), 189–229. MR 3881476, DOI 10.1515/crelle-2015-0115
- Heath Emerson, An introduction to $C^*$-algebras and noncommutative geometry. Book in preparation
- Kenneth Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. MR 3236784
- A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), no. 2, 133–142. MR 1563501, DOI 10.1090/S0002-9904-1937-06509-8
- Dimitris Michail Gerontogiannis, Ahlfors regularity and fractal dimension of Smale spaces, Ergodic Theory Dynam. Systems 42 (2022), no. 7, 2281–2332. MR 4434537, DOI 10.1017/etds.2021.27
- Dimitris Michail Gerontogiannis, Ahlfors regularity, extensions by Schatten ideals and a geometric fundamental class of Smale space $C^*$-algebras using dynamical partitions of unity, Ph.D. Thesis, Univ. of Glasgow, 2021.
- Magnus Goffeng, Equivariant extensions of $\ast$-algebras, New York J. Math. 16 (2010), 369–385. MR 2740582
- Magnus Goffeng, Analytic formulas for the topological degree of non-smooth mappings: the odd-dimensional case, Adv. Math. 231 (2012), no. 1, 357–377. MR 2935392, DOI 10.1016/j.aim.2012.05.009
- Magnus Goffeng and Bram Mesland, Spectral triples and finite summability on Cuntz-Krieger algebras, Doc. Math. 20 (2015), 89–170. MR 3398710
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142, DOI 10.1090/mmono/018
- Bernhard Gramsch, Integration und holomorphe Funktionen in lokalbeschränkten Räumen, Math. Ann. 162 (1965/66), 190–210 (German). MR 192337, DOI 10.1007/BF01361943
- Nigel Higson and John Roe, Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications. MR 1817560
- Jacob v. B. Hjelmborg and Mikael Rørdam, On stability of $C^*$-algebras, J. Funct. Anal. 155 (1998), no. 1, 153–170. MR 1623142, DOI 10.1006/jfan.1997.3221
- Kjeld Knudsen Jensen and Klaus Thomsen, Elements of $KK$-theory, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1124848, DOI 10.1007/978-1-4612-0449-7
- Jerome Kaminker and Ian Putnam, $K$-theoretic duality of shifts of finite type, Comm. Math. Phys. 187 (1997), no. 3, 509–522. MR 1468312, DOI 10.1007/s002200050147
- Jerome Kaminker, Ian F. Putnam, and Michael F. Whittaker, K-theoretic duality for hyperbolic dynamical systems, J. Reine Angew. Math. 730 (2017), 263–299. MR 3692021, DOI 10.1515/crelle-2014-0126
- Jerome Kaminker and Claude L. Schochet, Spanier-Whitehead $K$-duality for $C^*$-algebras, J. Topol. Anal. 11 (2019), no. 1, 21–52. MR 3918060, DOI 10.1142/S1793525319500055
- G. G. Kasparov, Topological invariants of elliptic operators. I. $K$-homology, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 4, 796–838 (Russian); Russian transl., Math. USSR-Izv. 9 (1975), no. 4, 751–792 (1976). MR 0488027
- G. G. Kasparov, The operator $K$-functor and extensions of $C^{\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719 (Russian). MR 582160
- G. G. Kasparov, Equivariant $KK$-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147–201. MR 918241, DOI 10.1007/BF01404917
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- D. B. Killough and I. F. Putnam, Bowen measure from heteroclinic points, Canad. J. Math. 64 (2012), no. 6, 1341–1358. MR 2994668, DOI 10.4153/CJM-2011-083-0
- Marcelo Laca and Jack Spielberg, Purely infinite $C^*$-algebras from boundary actions of discrete groups, J. Reine Angew. Math. 480 (1996), 125–139. MR 1420560, DOI 10.1515/crll.1996.480.125
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), no. 1, 85–122. MR 515647, DOI 10.5186/aasfm.1977.0315
- Ricardo Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc. 252 (1979), 313–319. MR 534124, DOI 10.1090/S0002-9947-1979-0534124-9
- Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Equivalence and isomorphism for groupoid $C^\ast$-algebras, J. Operator Theory 17 (1987), no. 1, 3–22. MR 873460
- Volodymyr Nekrashevych, $C^*$-algebras and self-similar groups, J. Reine Angew. Math. 630 (2009), 59–123. MR 2526786, DOI 10.1515/CRELLE.2009.035
- Shintaro Nishikawa and Valerio Proietti, Groups with Spanier-Whitehead duality, Ann. K-Theory 5 (2020), no. 3, 465–500. MR 4132744, DOI 10.2140/akt.2020.5.465
- William L. Paschke, $K$-theory for actions of the circle group on $C^{\ast }$-algebras, J. Operator Theory 6 (1981), no. 1, 125–133. MR 637006
- Mark Pollicott and Howard Weiss, The dimensions of some self-affine limit sets in the plane and hyperbolic sets, J. Statist. Phys. 77 (1994), no. 3-4, 841–866. MR 1301464, DOI 10.1007/BF02179463
- N. Christopher Phillips, A classification theorem for nuclear purely infinite simple $C^*$-algebras, Doc. Math. 5 (2000), 49–114. MR 1745197
- Iulian Popescu and Joachim Zacharias, $E$-theoretic duality for higher rank graph algebras, $K$-Theory 34 (2005), no. 3, 265–282. MR 2182379, DOI 10.1007/s10977-005-5544-6
- Michael Puschnigg, Finitely summable Fredholm modules over higher rank groups and lattices, J. K-Theory 8 (2011), no. 2, 223–239. MR 2842930, DOI 10.1017/is010011023jkt131
- Ian F. Putnam, Functoriality of the $C^*$-algebras associated with hyperbolic dynamical systems, J. London Math. Soc. (2) 62 (2000), no. 3, 873–884. MR 1794291, DOI 10.1112/S002461070000140X
- Ian F. Putnam Lecture notes on Smale spaces, Lecture Notes, Univ. of Victoria, 2006.
- Ian F. Putnam, A homology theory for Smale spaces, Mem. Amer. Math. Soc. 232 (2014), no. 1094, viii+122. MR 3243636, DOI 10.1090/memo/1094
- Ian F. Putnam, $C^*$-algebras from Smale spaces, Canad. J. Math. 48 (1996), no. 1, 175–195. MR 1382481, DOI 10.4153/CJM-1996-008-2
- Ian F. Putnam and Jack Spielberg, The structure of $C^\ast$-algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163 (1999), no. 2, 279–299. MR 1680475, DOI 10.1006/jfan.1998.3379
- Stephan Rave, On finitely summable $\Kt$-homology, Ph.D. Thesis, Univ. of Münster, 2012.
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266, DOI 10.1007/BFb0091072
- S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 471–473, XL (English, with Russian summary). MR 0088682
- David Ruelle, Thermodynamic formalism, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. The mathematical structures of equilibrium statistical mechanics. MR 2129258, DOI 10.1017/CBO9780511617546
- David Ruelle, Noncommutative algebras for hyperbolic diffeomorphisms, Invent. Math. 93 (1988), no. 1, 1–13. MR 943921, DOI 10.1007/BF01393685
- Katsuro Sakai, Geometric aspects of general topology, Springer Monographs in Mathematics, Springer, Tokyo, 2013. MR 3099433, DOI 10.1007/978-4-431-54397-8
- Viktor Schroeder, Quasi-metric and metric spaces, Conform. Geom. Dyn. 10 (2006), 355–360. MR 2268484, DOI 10.1090/S1088-4173-06-00155-X
- Larry B. Schweitzer, A short proof that $M_n(A)$ is local if $A$ is local and Fréchet, Internat. J. Math. 3 (1992), no. 4, 581–589. MR 1168361, DOI 10.1142/S0129167X92000266
- Aidan Sims, Étale groupoids and their $C^*$-algebras, arXiv:1710.10897v1, 2017, preprint.
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
- Michael F. Whittaker, Poincare Duality and Spectral Triples for Hyperbolic Dynamical Systems, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–University of Victoria (Canada). MR 2890169
- Susana Wieler, Smale Spaces with Totally Disconnected Local Stable Sets, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–University of Victoria (Canada). MR 3078609
- Dana P. Williams, Crossed products of $C{^\ast }$-algebras, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007. MR 2288954, DOI 10.1090/surv/134
- R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203. MR 348794, DOI 10.1007/BF02684369
Additional Information
- Dimitris Michail Gerontogiannis
- Affiliation: Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
- MR Author ID: 1511578
- ORCID: 0000-0002-0764-9174
- Email: d.gerontogiannis@hotmail.com
- Received by editor(s): December 13, 2021
- Received by editor(s) in revised form: June 7, 2022
- Published electronically: October 3, 2022
- Additional Notes: The research was supported by EPSRC (grants NS09668/1, M5086056/1) as well as the London Mathematical Society and Heilbronn Institute for Mathematical Research (Early Career Fellowship).
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 8885-8944
- MSC (2020): Primary 37D20, 19K33, 58B34; Secondary 54E15
- DOI: https://doi.org/10.1090/tran/8768