Homology of sheaves via Brown representability
HTML articles powered by AMS MathViewer
- by Fernando Sancho de Salas;
- Trans. Amer. Math. Soc. 376 (2023), 123-151
- DOI: https://doi.org/10.1090/tran/8602
- Published electronically: October 7, 2022
- HTML | PDF | Request permission
Abstract:
We give an elementary construction of homology of sheaves from Brown representability for the dual and see how its main properties are derived easily from the construction. Comparison with Poincaré-Verdier duality and with homology of groups are also developed.References
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 221500
- Justin Michael Curry, Dualities between cellular sheaves and cosheaves, J. Pure Appl. Algebra 222 (2018), no. 4, 966–993. MR 3720863, DOI 10.1016/j.jpaa.2017.06.001
- René Deheuvels, Homologie des ensembles ordonnés et des espaces topologiques, Bull. Soc. Math. France 90 (1962), 261–321 (French). MR 168614, DOI 10.24033/bsmf.1582
- Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. MR 842190, DOI 10.1007/978-3-642-82783-9
- Henning Krause, A Brown representability theorem via coherent functors, Topology 41 (2002), no. 4, 853–861. MR 1905842, DOI 10.1016/S0040-9383(01)00010-6
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Juan Antonio Navarro González, Duality and finite spaces, Order 6 (1990), no. 4, 401–408. MR 1063821, DOI 10.1007/BF00346134
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Amnon Neeman, Brown representability for the dual, Invent. Math. 133 (1998), no. 1, 97–105. MR 1626473, DOI 10.1007/s002220050240
- Andrei V. Prasolov, Cosheafification, Theory Appl. Categ. 31 (2016), Paper No. 38, 1134–1175. MR 3660525
- Andrei V. Prasolov, Precosheaves of pro-sets and abelian pro-groups are smooth, Topology Appl. 159 (2012), no. 5, 1339–1356. MR 2879363, DOI 10.1016/j.topol.2011.12.015
- F. Sancho de Salas and J. F. Torres Sancho, Asphericity and Bökstedt-Neeman theorem, Proc. Amer. Math. Soc. 149 (2021), no. 11, 4583–4594. MR 4310087, DOI 10.1090/proc/15557
- V. Carmona Sánchez, C. Maestro Pérez, F. Sancho de Salas, and J. F. Torres Sancho, Homology and cohomology of finite spaces, J. Pure Appl. Algebra 224 (2020), no. 4, 106200, 38. MR 4021914, DOI 10.1016/j.jpaa.2019.106200
- N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154. MR 932640
Bibliographic Information
- Fernando Sancho de Salas
- Affiliation: Departamento de Matemáticas, Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
- MR Author ID: 621464
- ORCID: 0000-0001-8915-2438
- Email: fsancho@usal.es
- Received by editor(s): February 20, 2021
- Received by editor(s) in revised form: November 16, 2021
- Published electronically: October 7, 2022
- Additional Notes: The author was supported by research projects MTM2017-86042-P (MEC) and SA106G19 (JCyL)
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 123-151
- MSC (2020): Primary 54B40, 55Nxx, 18G80
- DOI: https://doi.org/10.1090/tran/8602
- MathSciNet review: 4510107