Sobolev embeddings into Orlicz spaces and isocapacitary inequalities
HTML articles powered by AMS MathViewer
- by Andrea Cianchi and Vladimir G. Maz’ya;
- Trans. Amer. Math. Soc. 376 (2023), 91-121
- DOI: https://doi.org/10.1090/tran/8689
- Published electronically: October 7, 2022
- HTML | PDF | Request permission
Abstract:
Sobolev embeddings into Orlicz spaces on domains in the Euclidean space or, more generally, on Riemannian manifolds are considered. Highly irregular domains where the optimal degree of integrability of a function may be lower than the one of its gradient are focused. A necessary and sufficient condition for the validity of the relevant embeddings is established in terms of the isocapacitary function of the domain. Compact embeddings are discussed as well. Sufficient conditions involving the isoperimetric function of the domain are derived as a by-product.References
- Angelo Alvino, Andrea Cianchi, Vladimir G. Maz’ya, and Anna Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré C Anal. Non Linéaire 27 (2010), no. 4, 1017–1054 (English, with English and French summaries). MR 2659156, DOI 10.1016/j.anihpc.2010.01.010
- Vincent Bayle, A differential inequality for the isoperimetric profile, Int. Math. Res. Not. 7 (2004), 311–342. MR 2041647, DOI 10.1155/S1073792804130079
- Itai Benjamini and Jianguo Cao, A new isoperimetric comparison theorem for surfaces of variable curvature, Duke Math. J. 85 (1996), no. 2, 359–396. MR 1417620, DOI 10.1215/S0012-7094-96-08515-4
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- Joan Cerdà, Joaquim Martín, and Pilar Silvestre, Conductor Sobolev-type estimates and isocapacitary inequalities, Indiana Univ. Math. J. 61 (2012), no. 5, 1925–1947. MR 3119605, DOI 10.1512/iumj.2012.61.4709
- Isaac Chavel and Edgar A. Feldman, Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds, Duke Math. J. 64 (1991), no. 3, 473–499. MR 1141283, DOI 10.1215/S0012-7094-91-06425-2
- Andrea Cianchi, On relative isoperimetric inequalities in the plane, Boll. Un. Mat. Ital. B (7) 3 (1989), no. 2, 289–325 (English, with Italian summary). MR 997998
- Andrea Cianchi, A sharp form of Poincaré type inequalities on balls and spheres, Z. Angew. Math. Phys. 40 (1989), no. 4, 558–569 (English, with Italian summary). MR 1008923, DOI 10.1007/BF00944807
- Andrea Cianchi and Vladimir G. Maz’ya, Neumann problems and isocapacitary inequalities, J. Math. Pures Appl. (9) 89 (2008), no. 1, 71–105 (English, with English and French summaries). MR 2378090, DOI 10.1016/j.matpur.2007.10.001
- Andrea Cianchi and Vladimir Maz’ya, Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions, J. Math. Pures Appl. (9) 98 (2012), no. 6, 654–688 (English, with English and French summaries). MR 2994697, DOI 10.1016/j.matpur.2012.05.007
- Andrea Cianchi and Vladimir Mazýa, On the discreteness of the spectrum of the Laplacian on noncompact Riemannian manifolds, J. Differential Geom. 87 (2011), no. 3, 469–491. MR 2819545
- Andrea Cianchi and Vladimir G. Maz’ya, Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds, Amer. J. Math. 135 (2013), no. 3, 579–635. MR 3068397, DOI 10.1353/ajm.2013.0028
- Thierry Coulhon, Alexander Grigor′yan, and Daniel Levin, On isoperimetric profiles of product spaces, Comm. Anal. Geom. 11 (2003), no. 1, 85–120. MR 2016197, DOI 10.4310/CAG.2003.v11.n1.a5
- Şerban Costea, Scaling invariant Sobolev-Lorentz capacity on $\Bbb R^n$, Indiana Univ. Math. J. 56 (2007), no. 6, 2641–2669. MR 2375696, DOI 10.1512/iumj.2007.56.3216
- Serban Costea and Vladimir Maz’ya, Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities, Sobolev spaces in mathematics. II, Int. Math. Ser. (N. Y.), vol. 9, Springer, New York, 2009, pp. 103–121. MR 2484623, DOI 10.1007/978-0-387-85650-6_{6}
- Sylvestre Gallot, Inégalités isopérimétriques et analytiques sur les variétés riemanniennes, Astérisque 163-164 (1988), 5–6, 31–91, 281 (1989) (French, with English summary). On the geometry of differentiable manifolds (Rome, 1986). MR 999971
- Lee R. Gibson and Melanie Pivarski, Isoperimetric profiles on the pre-fractal Sierpinski carpet, Fractals 18 (2010), no. 4, 433–449. MR 2741283, DOI 10.1142/S0218348X10005111
- Renata Grimaldi and Pierre Pansu, Calibrations and isoperimetric profiles, Amer. J. Math. 129 (2007), no. 2, 315–350. MR 2306037, DOI 10.1353/ajm.2007.0010
- Piotr Hajłasz and Pekka Koskela, Isoperimetric inequalities and imbedding theorems in irregular domains, J. London Math. Soc. (2) 58 (1998), no. 2, 425–450. MR 1668136, DOI 10.1112/S0024610798006346
- M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and N. Nadirashvili, On the multiplicity of eigenvalues of the Laplacian on surfaces, Ann. Global Anal. Geom. 17 (1999), no. 1, 43–48. MR 1674331, DOI 10.1023/A:1006595115793
- Peter W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), no. 1-2, 71–88. MR 631089, DOI 10.1007/BF02392869
- T. Kilpeläinen and J. Malý, Sobolev inequalities on sets with irregular boundaries, Z. Anal. Anwendungen 19 (2000), no. 2, 369–380. MR 1768998, DOI 10.4171/ZAA/956
- Bruce Kleiner, An isoperimetric comparison theorem, Invent. Math. 108 (1992), no. 1, 37–47. MR 1156385, DOI 10.1007/BF02100598
- Ernst Kuwert, Note on the isoperimetric profile of a convex body, Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 2003, pp. 195–200. MR 2008339
- D. A. Labutin, Embedding of Sobolev spaces on Hölder domains, Tr. Mat. Inst. Steklova 227 (1999), no. Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18, 170–179 (Russian); English transl., Proc. Steklov Inst. Math. 4(227) (1999), 163–172. MR 1784315
- J. Lang and V. Maz’ya, Essential norms and localization moduli of Sobolev embeddings for general domains, J. Lond. Math. Soc. (2) 78 (2008), no. 2, 373–391. MR 2439630, DOI 10.1112/jlms/jdn035
- Pierre-Louis Lions and Filomena Pacella, Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc. 109 (1990), no. 2, 477–485. MR 1000160, DOI 10.1090/S0002-9939-1990-1000160-1
- Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997. MR 1461542, DOI 10.1090/surv/051
- V. G. Maz′ja, Classes of domains and imbedding theorems for function spaces, Dokl. Akad. Nauk SSSR 133, 527–530 (Russian); English transl., Soviet Math. Dokl. 1 (1960), 882–885. MR 126152
- V. G. Maz′ja, $p$-conductivity and theorems on imbedding certain functional spaces into a $C$-space, Dokl. Akad. Nauk SSSR 140 (1961), 299–302 (Russian). MR 157224
- V. G. Maz′ja, On the solvability of the Neumann problem, Dokl. Akad. Nauk SSSR 147 (1962), 294–296 (Russian). MR 144058
- V. G. Maz′ja, The Neumann problem in regions with nonregular boundaries, Sibirsk. Mat. Ž. 9 (1968), 1322–1350 (Russian). MR 239270
- V. G. Maz′ja, Weak solutions of the Dirichlet and Neumann problems, Trudy Moskov. Mat. Obšč. 20 (1969), 137–172 (Russian). MR 259329
- Vladimir Maz’ya, Certain integral inequalities for functions of many variables, Problems in Mathematical Analysis 3 LGU Leningrad (1972), 33–69 (Russian); English translation: J. Sov. Math. 1 (1973), 205–234.
- Wladimir Mazja, Einbettungssätze für Sobolewsche Räume. Teil 2, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 28, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980 (German). With English, French and Russian summaries. MR 594779
- Vladimir Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011. MR 2777530, DOI 10.1007/978-3-642-15564-2
- Vladimir Maz′ya and Yuri Netrusov, Some counterexamples for the theory of Sobolev spaces on bad domains, Potential Anal. 4 (1995), no. 1, 47–65. MR 1313906, DOI 10.1007/BF01048966
- Vladimir G. Maz′ya and Sergei V. Poborchi, Differentiable functions on bad domains, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. MR 1643072
- Emanuel Milman, On the role of convexity in isoperimetry, spectral gap and concentration, Invent. Math. 177 (2009), no. 1, 1–43. MR 2507637, DOI 10.1007/s00222-009-0175-9
- Frank Morgan and David L. Johnson, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J. 49 (2000), no. 3, 1017–1041. MR 1803220, DOI 10.1512/iumj.2000.49.1929
- Stefano Nardulli and Pierre Pansu, A complete Riemannian manifold whose isoperimetric profile is discontinuous, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 2, 537–549. MR 3801288, DOI 10.1007/s00028-017-0410-6
- Pierre Pansu, Sur la régularité du profil isopérimétrique des surfaces riemanniennes compactes, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 1, 247–264 (French, with English and French summaries). MR 1614957, DOI 10.5802/aif.1617
- Ch. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds, J. Differential Geom. 54 (2000), no. 2, 255–302. MR 1818180, DOI 10.4310/jdg/1214341647
- Stanislav I. Pohozhaev, On the imbedding Sobolev theorem for $pl=n$ Doklady Conference Section Math. Moscow Power Inst. 165 (1965), 158–170 (Russian).
- Procopis Psaltis, The isoperimetric profile of infinite genus surfaces, Geom. Dedicata 149 (2010), 95–102. MR 2737681, DOI 10.1007/s10711-010-9468-9
- Manuel Ritoré, Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces, Comm. Anal. Geom. 9 (2001), no. 5, 1093–1138. MR 1883725, DOI 10.4310/CAG.2001.v9.n5.a5
- Manuel Ritoré, Continuity of the isoperimetric profile of a complete Riemannian manifold under sectional curvature conditions, Rev. Mat. Iberoam. 33 (2017), no. 1, 239–250. MR 3615450, DOI 10.4171/RMI/935
- Peter Sternberg and Kevin Zumbrun, On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint, Comm. Anal. Geom. 7 (1999), no. 1, 199–220. MR 1674097, DOI 10.4310/CAG.1999.v7.n1.a7
- Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. MR 216286, DOI 10.1512/iumj.1968.17.17028
- V. I. Judovič, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR 138 (1961), 805–808 (Russian). MR 140822
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Andrea Cianchi
- Affiliation: Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
- MR Author ID: 260742
- ORCID: 0000-0002-1198-8718
- Email: andrea.cianchi@unifi.it
- Vladimir G. Maz’ya
- Affiliation: Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
- MR Author ID: 196507
- Email: vladimir.mazya@liu.se
- Received by editor(s): January 24, 2021
- Received by editor(s) in revised form: September 14, 2021
- Published electronically: October 7, 2022
- Additional Notes: This research was partly funded by: Research Project 201758MTR2 of the Italian Ministry of Education, University and Research (MIUR) Prin 2017 “Direct and inverse problems for partial differential equations: theoretical aspects and applications”; GNAMPA of the Italian INdAM - National Institute of High Mathematics (grant number not available).
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 91-121
- MSC (2000): Primary 46E35, 46E30
- DOI: https://doi.org/10.1090/tran/8689
- MathSciNet review: 4510106