Differences between perfect powers: The Lebesgue-Nagell equation
HTML articles powered by AMS MathViewer
- by Michael A. Bennett and Samir Siksek;
- Trans. Amer. Math. Soc. 376 (2023), 335-370
- DOI: https://doi.org/10.1090/tran/8734
- Published electronically: October 24, 2022
- HTML | PDF | Request permission
Abstract:
We develop a variety of new techniques to treat Diophantine equations of the shape $x^2+D =y^n$, based upon bounds for linear forms in $p$-adic and complex logarithms, the modularity of Galois representations attached to Frey-Hellegouarch elliptic curves, and machinery from Diophantine approximation. We use these to explicitly determine the set of all coprime integers $x$ and $y$, and $n \geq 3$, with the property that $y^n > x^2$ and $x^2-y^n$ has no prime divisor exceeding $11$.References
- C. F. Barros. On the Lebesgue-Nagell equation and related subjects. University of Warwick PhD thesis, August 2010.
- Michael A. Bennett, Adela Gherga, Vandita Patel, and Samir Siksek, Odd values of the Ramanujan tau function, Math. Ann. 382 (2022), no. 1-2, 203–238. MR 4377302, DOI 10.1007/s00208-021-02241-3
- Michael A. Bennett, Adela Gherga, and Andrew Rechnitzer, Computing elliptic curves over $\Bbb {Q}$, Math. Comp. 88 (2019), no. 317, 1341–1390. MR 3904149, DOI 10.1090/mcom/3370
- M. A. Bennett and S. Siksek. Differences between perfect powers : prime power gaps. submitted for publication.
- Michael A. Bennett and Chris M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 (2004), no. 1, 23–54. MR 2031121, DOI 10.4153/CJM-2004-002-2
- Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122. With an appendix by M. Mignotte. MR 1863855, DOI 10.1515/crll.2001.080
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8
- Yann Bugeaud, On the Diophantine equation $x^2-p^m=\pm y^n$, Acta Arith. 80 (1997), no. 3, 213–223. MR 1451409, DOI 10.4064/aa-80-3-213-223
- Yann Bugeaud, On the greatest prime factor of $ax^m+by^n$. II, Bull. London Math. Soc. 32 (2000), no. 6, 673–678. MR 1781579, DOI 10.1112/S0024609300007487
- Y. Bugeaud and M. Laurent, Minoration effective de la distance $p$-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), no. 2, 311–342 (French, with English summary). MR 1423057, DOI 10.1006/jnth.1996.0152
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell equation, Compos. Math. 142 (2006), no. 1, 31–62. MR 2196761, DOI 10.1112/S0010437X05001739
- R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$, Ann. of Math. (2) 15 (1913/14), no. 1-4, 49–70. MR 1502459, DOI 10.2307/1967798
- Imin Chen, On the equations $a^2-2b^6=c^p$ and $a^2-2=c^p$, LMS J. Comput. Math. 15 (2012), 158–171. MR 2944970, DOI 10.1112/S146115701200006X
- J. H. E. Cohn, The Diophantine equation $x^2+C=y^n$. II, Acta Arith. 109 (2003), no. 2, 205–206. MR 1980647, DOI 10.4064/aa109-2-8
- A. Gherga and S. Siksek. Efficient resolution of Thue-Mahler equations. to appear. arXiv:2207.14492 (2022).
- Emmanuel Halberstadt and Alain Kraus, Courbes de Fermat: résultats et problèmes, J. Reine Angew. Math. 548 (2002), 167–234 (French, with English summary). MR 1915212, DOI 10.1515/crll.2002.058
- Angelos Koutsianas, An application of the modular method and the symplectic argument to a Lebesgue-Nagell equation, Mathematika 66 (2020), no. 1, 230–244. MR 4130322, DOI 10.1112/mtk.12018
- Michel Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), no. 4, 325–348. MR 2457264, DOI 10.4064/aa133-4-3
- Maohua Le and Gökhan Soydan, A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020), 473–523. MR 4118124
- V. A. Lebesgue. Sur l’impossibilité, en nombres entiers, de l’équation $x^m = y^2 + 1$. Nouv. Ann. de Math., 9(1), 1850.
- Florian Luca, On the equation $x^2+2^a\cdot 3^b=y^n$, Int. J. Math. Math. Sci. 29 (2002), no. 4, 239–244. MR 1897992, DOI 10.1155/S0161171202004696
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian, with Russian summary); English transl., Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252, DOI 10.1070/IM2000v064n06ABEH000314
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- M. Mignotte, A kit on linear forms in three logarithms. http://www-irma.u-strasbg.fr/~bugeaud/travaux/kit.ps, 2008.
- Preda Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167–195. MR 2076124, DOI 10.1515/crll.2004.048
- T. Nagell, Sur l’impossibilité de quelques equations à deux indéterminées. Norsk Mat. Forenings Skr. 13 (1923), 65–82.
- Trygve Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsaliensis (4) 16 (1955), no. 2, 38. MR 70645
- S. S. Pillai, On $a^X-b^Y-b^y\pm a^x$, J. Indian Math. Soc. (N.S.) 8 (1944), 10–13. MR 11477
- István Pink, On the Diophantine equation $x^2+2^\alpha 3^\beta 5^\gamma 7^\delta =y^n$, Publ. Math. Debrecen 70 (2007), no. 1-2, 149–166. MR 2288472, DOI 10.5486/pmd.2007.3477
- K. A. Ribet, On modular representations of $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, DOI 10.1007/BF01231195
- Samir Siksek, The modular approach to Diophantine equations, Explicit methods in number theory, Panor. Synthèses, vol. 36, Soc. Math. France, Paris, 2012, pp. 151–179 (English, with English and French summaries). MR 3098134
- Nigel P. Smart, The algorithmic resolution of Diophantine equations, London Mathematical Society Student Texts, vol. 41, Cambridge University Press, Cambridge, 1998. MR 1689189, DOI 10.1017/CBO9781107359994
- G. Soydan and N. Tzanakis, Complete solution of the Diophantine equation $x^2+5^a\cdot 11^b=y^n$, Bull. Hellenic Math. Soc. 60 (2016), 125–151. MR 3622880
- N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), no. 2, 99–132. MR 987566, DOI 10.1016/0022-314X(89)90014-0
- N. Tzanakis and B. M. M. de Weger, Solving a specific Thue-Mahler equation, Math. Comp. 57 (1991), no. 196, 799–815. MR 1094961, DOI 10.1090/S0025-5718-1991-1094961-0
- N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Compositio Math. 84 (1992), no. 3, 223–288. MR 1189890
- R. von Känel and B. Matschke, Solving $S$-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via Shimura-Taniyama conjecture. to appear in Mem. Amer. Math. Soc.
- B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract, vol. 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1026936
- B. M. M. de Weger, The weighted sum of two $S$-units being a square, Indag. Math. (N.S.) 1 (1990), no. 2, 243–262. MR 1060828, DOI 10.1016/0019-3577(90)90007-A
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559
Bibliographic Information
- Michael A. Bennett
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2 Canada
- MR Author ID: 339361
- Email: bennett@math.ubc.ca
- Samir Siksek
- Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 603137
- ORCID: 0000-0002-7998-2259
- Email: S.Siksek@warwick.ac.uk
- Received by editor(s): September 14, 2021
- Received by editor(s) in revised form: April 21, 2022
- Published electronically: October 24, 2022
- Additional Notes: The first author was supported by NSERC. The second author was supported by EPSRC Grant EP/S031537/1 \lq\lq Moduli of elliptic curves and classical Diophantine problems\rq\rq.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 335-370
- MSC (2020): Primary 11D61; Secondary 11D41, 11F80, 11F03
- DOI: https://doi.org/10.1090/tran/8734
- MathSciNet review: 4510112