Scattering for the cubic Schrödinger equation in 3D with randomized radial initial data
HTML articles powered by AMS MathViewer
- by Nicolas Camps;
- Trans. Amer. Math. Soc. 376 (2023), 285-333
- DOI: https://doi.org/10.1090/tran/8737
- Published electronically: October 13, 2022
- HTML | PDF | Request permission
Abstract:
We obtain almost-sure scattering for the Schrödinger equation with a defocusing cubic nonlinearity in the Euclidean space $\mathbb {R}^3$, with randomized radially-symmetric initial data at some supercritical regularity scales. Since we make no smallness assumption, our result generalizes the work of Bényi, Oh and Pocovnicu [Trans. Amer. Math. Soc. Ser. B 2 (2015), pp. 1–50]. It also extends the results of Dodson, Lührmann and Mendelson [Adv. Math. 347 (2019), pp. 619–676] on the energy-critical equation in $\mathbb {R}^4$, to the energy-subcritical equation in $\mathbb {R}^3$. In this latter setting, even if the nonlinear Duhamel term enjoys a stochastic smoothing effect which makes it subcritical, it still has infinite energy. In the present work, we first develop a stability theory from the deterministic scattering results below the energy space, due to Colliander, Keel, Staffilani, Takaoka and Tao. Then, we propose a globalization argument in which we set up the $I$-method with a Morawetz bootstrap in a stochastic setting. To our knowledge, this is the first almost-sure scattering result for an energy-subcritical Schrödinger equation outside the small data regime.References
- Árpád Bényi, Tadahiro Oh, and Oana Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\Bbb {R}^d$, $d\geq 3$, Trans. Amer. Math. Soc. Ser. B 2 (2015), 1–50. MR 3350022, DOI 10.1090/btran/6
- Árpád Bényi, Tadahiro Oh, and Oana Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in harmonic analysis. Vol. 4, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2015, pp. 3–25. MR 3411090
- Árpád Bényi, Tadahiro Oh, and Oana Pocovnicu, Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on $\Bbb {R}^3$, Trans. Amer. Math. Soc. Ser. B 6 (2019), 114–160. MR 3919013, DOI 10.1090/btran/29
- Árpád Bényi, Tadahiro Oh, and Oana Pocovnicu, On the probabilistic Cauchy theory for nonlinear dispersive PDEs, Landscapes of time-frequency analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, pp. 1–32. MR 3889875
- J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), no. 1, 1–26. MR 1309539, DOI 10.1007/BF02099299
- Jean Bourgain, Invariant measures for the $2$D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, 421–445. MR 1374420, DOI 10.1007/BF02099556
- J. Bourgain, Refinements of Strichartz’ inequality and applications to $2$D-NLS with critical nonlinearity, Internat. Math. Res. Notices 5 (1998), 253–283. MR 1616917, DOI 10.1155/S1073792898000191
- J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math. 75 (1998), 267–297. MR 1655835, DOI 10.1007/BF02788703
- N. Burq and L. Thomann, Almost sure scattering for the one dimensional nonlinear Schrödinger equation, Preprint, arXiv:2012.13571, 2020.
- Nicolas Burq and Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math. 173 (2008), no. 3, 449–475. MR 2425133, DOI 10.1007/s00222-008-0124-z
- Nicolas Burq and Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. II. A global existence result, Invent. Math. 173 (2008), no. 3, 477–496. MR 2425134, DOI 10.1007/s00222-008-0123-0
- N. Camps and L. Gassot, Pathological set of initial data for scaling-supercritical nonlinear Schrödinger equations, International Mathematics Research Notices, 2022, DOI 10.1093/imrn/rnac194.
- M. Christ, J. Colliander, and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, Preprint, arXiv:0311048, 2003.
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\Bbb R^3$, Comm. Pure Appl. Math. 57 (2004), no. 8, 987–1014. MR 2053757, DOI 10.1002/cpa.20029
- James Colliander and Tadahiro Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\Bbb T)$, Duke Math. J. 161 (2012), no. 3, 367–414. MR 2881226, DOI 10.1215/00127094-1507400
- P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), no. 2, 413–439. MR 928265, DOI 10.1090/S0894-0347-1988-0928265-0
- Giuseppe Da Prato and Arnaud Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal. 196 (2002), no. 1, 180–210. MR 1941997, DOI 10.1006/jfan.2002.3919
- Benjamin Dodson, Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n=3$ via a linear-nonlinear decomposition, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 1905–1926. MR 3002734, DOI 10.3934/dcds.2013.33.1905
- Benjamin Dodson, Global well-posedness and scattering for nonlinear Schrödinger equations with algebraic nonlinearity when $d=2,3$ and $u_0$ is radial, Camb. J. Math. 7 (2019), no. 3, 283–318. MR 4010063, DOI 10.4310/CJM.2019.v7.n3.a2
- Benjamin Dodson, Jonas Lührmann, and Dana Mendelson, Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation, Adv. Math. 347 (2019), 619–676. MR 3920835, DOI 10.1016/j.aim.2019.02.001
- Benjamin Dodson, Jonas Lührmann, and Dana Mendelson, Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data, Amer. J. Math. 142 (2020), no. 2, 475–504. MR 4084161, DOI 10.1353/ajm.2020.0013
- C. Fan and D. Mendelson, Construction of $L^2$ log-log blowup solutions for the mass critical nonlinear Schrödinger equation, Preprint, arXiv:2010.07821, 2020.
- M. Gubinelli, H. Koch, T. Oh, and L. Tolomeo, Global dynamics for the two-dimensional stochastic nonlinear wave equations, Internat. Math. Res. Notices (2021).
- Martin Hadac, Sebastian Herr, and Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 3, 917–941. MR 2526409, DOI 10.1016/j.anihpc.2008.04.002
- Sebastian Herr, Daniel Tataru, and Nikolay Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\Bbb T^3)$, Duke Math. J. 159 (2011), no. 2, 329–349. MR 2824485, DOI 10.1215/00127094-1415889
- Carlos E. Kenig and Frank Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc. 362 (2010), no. 4, 1937–1962. MR 2574882, DOI 10.1090/S0002-9947-09-04722-9
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Global well-posedness for semi-linear wave equations, Comm. Partial Differential Equations 25 (2000), no. 9-10, 1741–1752. MR 1778778, DOI 10.1080/03605300008821565
- Rowan Killip, Jason Murphy, and Monica Visan, Almost sure scattering for the energy-critical NLS with radial data below $H^1(\Bbb R^4)$, Comm. Partial Differential Equations 44 (2019), no. 1, 51–71. MR 3933623, DOI 10.1080/03605302.2018.1541904
- Jonas Lührmann and Dana Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\Bbb {R}^3$, Comm. Partial Differential Equations 39 (2014), no. 12, 2262–2283. MR 3259556, DOI 10.1080/03605302.2014.933239
- R. Coifman and Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, xi, 177–202 (French, with English summary). MR 511821, DOI 10.5802/aif.708
- Tadahiro Oh, Mamoru Okamoto, and Oana Pocovnicu, On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities, Discrete Contin. Dyn. Syst. 39 (2019), no. 6, 3479–3520. MR 3959438, DOI 10.3934/dcds.2019144
- A. Poiret, Solutions globales pour l’équation de Schrödinger cubique en dimension 3, Preprint, arXiv:1207.1578, 2012.
- Aurélien Poiret, Didier Robert, and Laurent Thomann, Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator, Anal. PDE 7 (2014), no. 4, 997–1026. MR 3254351, DOI 10.2140/apde.2014.7.997
- J. Shen, A. Soffer, and Y. Wu, Almost sure well-posedness and scattering of 3d cubic nonlinear Schrödinger equation, Preprint, arXiv:2110.11648, 2021.
- M. Spitz, Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data, arXiv preprint arXiv:2110.11051, 2021.
- Qingtang Su, Global well posedness and scattering for the defocusing, cubic NLS in $\Bbb R^3$, Math. Res. Lett. 19 (2012), no. 2, 431–451. MR 2955773, DOI 10.4310/MRL.2012.v19.n2.a14
- Chenmin Sun and Nikolay Tzvetkov, Concerning the pathological set in the context of probabilistic well-posedness, C. R. Math. Acad. Sci. Paris 358 (2020), no. 9-10, 989–999 (English, with English and French summaries). MR 4196770, DOI 10.5802/crmath.102
- Chenmin Sun and Bo Xia, Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three, Illinois J. Math. 60 (2016), no. 2, 481–503. MR 3680544
Bibliographic Information
- Nicolas Camps
- Affiliation: Université Paris-Saclay, Laboratoire de mathématiques d’Orsay, UMR 8628 du CNRS, Bâtiment 307, 91405 Orsay Cedex, France
- ORCID: 0000-0002-7451-3576
- Email: nicolas.camps@universite-paris-saclay.fr
- Received by editor(s): October 25, 2021
- Received by editor(s) in revised form: March 21, 2022
- Published electronically: October 13, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 285-333
- MSC (2020): Primary 35B40; Secondary 42B37, 35A01, 35Q55, 35B60, 35R60
- DOI: https://doi.org/10.1090/tran/8737
- MathSciNet review: 4510111