From the Littlewood-Paley-Stein inequality to the Burkholder-Gundy inequality
HTML articles powered by AMS MathViewer
- by Zhendong Xu and Hao Zhang;
- Trans. Amer. Math. Soc. 376 (2023), 371-389
- DOI: https://doi.org/10.1090/tran/8773
- Published electronically: October 13, 2022
- HTML | PDF | Request permission
Abstract:
Let $\{\mathsf {T}_t\}_{t>0}$ be a symmetric diffusion semigroup on a $\sigma$-finite measure space $(\Omega , \mathscr {A}, \mu )$ and $G^{\mathsf {T}}$ the associated Littlewood-Paley $g$-function operator: \[ G^{\mathsf {T}}(f)=\Big (\int _0^\infty \left |t\frac {\partial }{\partial t} \mathsf {T}_t(f)\right |^2\frac {\mathrm {d}t}{t}\Big )^{\frac 12}. \] The classical Littlewood-Paley-Stein inequality asserts that for any $1<p<\infty$ there exist two positive constants $\mathsf {L}^{\mathsf {T}}_{p}$ and $\mathsf {S}^{\mathsf {T}}_{p}$ such that \[ \big (\mathsf {L}^{\mathsf {T}}_{ p}\big )^{-1}\big \|f-\mathrm {F}(f)\big \|_{p}\le \big \|G^{\mathsf {T}}(f)\big \|_{p} \le \mathsf {S}^{\mathsf {T}}_{p}\big \|f\big \|_{p}\,,\quad \forall f\in L_p(\Omega ), \] where $\mathrm {F}$ is the projection from $L_p(\Omega )$ onto the fixed point subspace of $\{\mathsf {T}_t\}_{t>0}$ of $L_p(\Omega )$.
Recently, Xu proved that $\mathsf {L}^{\mathsf {T}}_{ p}\lesssim p$ as $p\rightarrow \infty$, and raised the problem about the optimal order of $\mathsf {L}^{\mathsf {T}}_{ p}$ as $p\rightarrow \infty$. We solve Xu’s open problem by showing that this upper estimate of $\mathsf {L}^{\mathsf {T}}_{ p}$ is in fact optimal. Our argument is based on the construction of a special symmetric diffusion semigroup associated with any given martingale such that its square function $G^{\mathsf {T}}(f)$ for any $f\in L_p(\Omega )$ is pointwise comparable with the martingale square function of $f$. Our method also extends to the vector-valued and noncommutative setting.
References
- Donald L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque 157-158 (1988), 75–94. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR 976214
- Adriano M. Garsia, Martingale inequalities: Seminar notes on recent progress, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. MR 448538
- S. Gerschgorin, Uber die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], (1937), no. 7, 749–754.
- Marius Junge and Quanhua Xu, On the best constants in some non-commutative martingale inequalities, Bull. London Math. Soc. 37 (2005), no. 2, 243–253. MR 2119024, DOI 10.1112/S0024609304003947
- Marius Junge, Christian Le Merdy, and Quanhua Xu, $H^\infty$ functional calculus and square functions on noncommutative $L^p$-spaces, Astérisque 305 (2006), vi+138 (English, with English and French summaries). MR 2265255
- Teresa Martínez, José L. Torrea, and Quanhua Xu, Vector-valued Littlewood-Paley-Stein theory for semigroups, Adv. Math. 203 (2006), no. 2, 430–475. MR 2227728, DOI 10.1016/j.aim.2005.04.010
- Jacques Neveu, Deux remarques sur la théorie des martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 122–127 (1964) (French). MR 166842, DOI 10.1007/BF00535971
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 394135, DOI 10.1007/BF02760337
- Gilles Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 167–241. MR 864714, DOI 10.1007/BFb0076302
- Gilles Pisier and Quanhua Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), no. 3, 667–698. MR 1482934, DOI 10.1007/s002200050224
- Gilles Pisier and Quanhua Xu, Inégalités de martingales non commutatives, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 7, 817–822 (French, with English and French summaries). MR 1416183
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970. MR 252961
- Quanhua Xu, Littlewood-Paley theory for functions with values in uniformly convex spaces, J. Reine Angew. Math. 504 (1998), 195–226. MR 1656775, DOI 10.1515/crll.1998.107
- Q. Xu, Holomorphic functional calculus and vector-valued Littlewood-Paley-Stein theory for semigroups. Preprint arXiv:2105.12175, 2021.
- Quanhua Xu, Optimal orders of the best constants in the Littlewood-Paley inequalities, J. Funct. Anal. 283 (2022), no. 6, Paper No. 109570, 37. MR 4433052, DOI 10.1016/j.jfa.2022.109570
Bibliographic Information
- Zhendong Xu
- Affiliation: Laboratoire de Mathématiques, Université de Bourgogne Franche-Comté, 25030 Besançon Cedex, France
- MR Author ID: 1511626
- Email: xu.zhendong@univ-fcomte.fr
- Hao Zhang
- Affiliation: Laboratoire de Mathématiques, Université de Bourgogne Franche-Comté, 25030 Besançon Cedex, France
- Email: hao.zhang@univ-fcomte.fr
- Received by editor(s): January 6, 2022
- Received by editor(s) in revised form: May 2, 2022
- Published electronically: October 13, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 371-389
- MSC (2020): Primary 47D07, 60G42; Secondary 46B09, 46L99
- DOI: https://doi.org/10.1090/tran/8773
- MathSciNet review: 4510113