An $(\infty ,2)$-categorical pasting theorem
HTML articles powered by AMS MathViewer
- by Philip Hackney, Viktoriya Ozornova, Emily Riehl and Martina Rovelli;
- Trans. Amer. Math. Soc. 376 (2023), 555-597
- DOI: https://doi.org/10.1090/tran/8783
- Published electronically: October 3, 2022
- HTML | PDF
Abstract:
We show that any pasting diagram in any $(\infty ,2)$-category has a homotopically unique composite. This is achieved by showing that the free 2-category generated by a pasting scheme is the homotopy colimit of its cells as an $(\infty ,2)$-category. We prove this explicitly in the simplicial categories model and then explain how to deduce the model-independent statement from that calculation.References
- Dimitri Ara and Georges Maltsiniotis, Vers une structure de catégorie de modèles à la Thomason sur la catégorie des $n$-catégories strictes, Adv. Math. 259 (2014), 557–654. MR 3197667, DOI 10.1016/j.aim.2014.03.013
- Dimitri Ara, Higher quasi-categories vs higher Rezk spaces, J. K-Theory 14 (2014), no. 3, 701–749. MR 3350089, DOI 10.1017/S1865243315000021
- Clark Barwick, $(\infty , n)$-Cat as a closed model category, ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–University of Pennsylvania. MR 2706984
- Jean Bénabou, Introduction to bicategories, Reports of the Midwest Category Seminar, Lecture Notes in Math., No. 47, Springer, Berlin-New York, 1967, pp. 1–77. MR 220789
- Clemens Berger, Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007), no. 1, 230–270. MR 2331244, DOI 10.1016/j.aim.2006.12.006
- Julia E. Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2043–2058. MR 2276611, DOI 10.1090/S0002-9947-06-03987-0
- J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008. MR 2368647, DOI 10.1007/978-1-84628-970-5
- Anna Marie Bohmann, Kristen Mazur, Angélica M. Osorno, Viktoriya Ozornova, Kate Ponto, and Carolyn Yarnall, A model structure on $G\mathcal Cat$, Women in topology: collaborations in homotopy theory, Contemp. Math., vol. 641, Amer. Math. Soc., Providence, RI, 2015, pp. 123–134. MR 3380072, DOI 10.1090/conm/641/12861
- Julia E. Bergner and Charles Rezk, Comparison of models for $(\infty ,n)$-categories, I, Geom. Topol. 17 (2013), no. 4, 2163–2202. MR 3109865, DOI 10.2140/gt.2013.17.2163
- Clark Barwick and Christopher Schommer-Pries, On the unicity of the theory of higher categories, J. Amer. Math. Soc. 34 (2021), no. 4, 1011–1058. MR 4301559, DOI 10.1090/jams/972
- Denis-Charles Cisinski, La classe des morphismes de Dwyer n’est pas stable par retractes, Cahiers Topologie Géom. Différentielle Catég. 40 (1999), no. 3, 227–231 (French, with English summary). MR 1716777
- Tobias Columbus, $2$-categorical aspects of quasi-categories, PhD thesis, Karlsruher Institut für Technologie, 2017.
- Rudolf Fritsch and Dana May Latch, Homotopy inverses for nerve, Math. Z. 177 (1981), no. 2, 147–179. MR 612870, DOI 10.1007/BF01214196
- Simon Forest, Unifying notions of pasting diagrams, High. Struct. 6 (2022), no. 1, 1–79. MR 4456592
- Andrea Gagna, Yonatan Harpaz, and Edoardo Lanari, Gray tensor products and Lax functors of $(\infty ,2)$-categories, Adv. Math. 391 (2021), Paper No. 107986, 32. MR 4305242, DOI 10.1016/j.aim.2021.107986
- Andrea Gagna, Yonatan Harpaz, and Edoardo Lanari, On the equivalence of all models for $(\infty ,2)$-categories, J. Lond. Math. Soc. (2), 2022. arXiv:1911.01905v2 [math.AT], doi:10.1112/jlms.12614.
- Amar Hadzihasanovic, A combinatorial-topological shape category for polygraphs, Appl. Categ. Structures 28 (2020), no. 3, 419–476. MR 4089625, DOI 10.1007/s10485-019-09586-6
- Philip Hackney, Viktoriya Ozornova, Emily Riehl, and Martina Rovelli, Pushouts of Dwyer maps are $(\infty ,1)$-categorical, arXiv:2205.02353 [math.AT], 2022.
- Michael Johnson, The combinatorics of $n$-categorical pasting, J. Pure Appl. Algebra 62 (1989), no. 3, 211–225. MR 1026875, DOI 10.1016/0022-4049(89)90136-9
- André Joyal and Myles Tierney, Quasi-categories vs Segal spaces, Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 277–326. MR 2342834, DOI 10.1090/conm/431/08278
- Niles Johnson and Donald Yau, A bicategorical pasting theorem, arXiv:1910.01220v1 [math.CT], 2019.
- Niles Johnson and Donald Yau, 2-dimensional categories, Oxford University Press, Oxford, 2021. MR 4261588, DOI 10.1093/oso/9780198871378.001.0001
- G. M. Kelly and Ross Street, Review of the elements of $2$-categories, Category Seminar (Proc. Sem., Sydney, 1972/1973) Lecture Notes in Math., Vol. 420, Springer, Berlin-New York, 1974, pp. 75–103. MR 357542
- Stephen Lack, Icons, Appl. Categ. Structures 18 (2010), no. 3, 289–307. MR 2640216, DOI 10.1007/s10485-008-9136-5
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, $(\infty , 2)$-categories and the Goodwillie Calculus I, arXiv:0905.0462v2 [math.CT], 2009.
- Yuki Maehara, The Gray tensor product for 2-quasi-categories, Adv. Math. 377 (2021), Paper No. 107461, 78. MR 4186004, DOI 10.1016/j.aim.2020.107461
- Lyne Moser, Viktoriya Ozornova, and Martina Rovelli, Model independence of $(\infty ,2)$-categorical nerves, arXiv:2206.00660 [math.AT], 2022.
- Viktoriya Ozornova and Martina Rovelli, Model structures for $(\infty ,n)$-categories on (pre)stratified simplicial sets and prestratified simplicial spaces, Algebr. Geom. Topol. 20 (2020), no. 3, 1543–1600. MR 4105558, DOI 10.2140/agt.2020.20.1543
- Viktoriya Ozornova, Martina Rovelli, and Dominic Verity, Gray tensor product and saturated $n$-complicial sets, arXiv:2007.01235v1 [math.AT], 2020.
- A. J. Power, A $2$-categorical pasting theorem, J. Algebra 129 (1990), no. 2, 439–445. MR 1040947, DOI 10.1016/0021-8693(90)90229-H
- George Raptis, Homotopy theory of posets, Homology Homotopy Appl. 12 (2010), no. 2, 211–230. MR 2721035, DOI 10.4310/HHA.2010.v12.n2.a7
- Charles Rezk, A Cartesian presentation of weak $n$-categories, Geom. Topol. 14 (2010), no. 1, 521–571. MR 2578310, DOI 10.2140/gt.2010.14.521
- Emily Riehl, Categorical homotopy theory, New Mathematical Monographs, vol. 24, Cambridge University Press, Cambridge, 2014. MR 3221774, DOI 10.1017/CBO9781107261457
- Emily Riehl and Dominic Verity, Homotopy coherent adjunctions and the formal theory of monads, Adv. Math. 286 (2016), 802–888. MR 3415698, DOI 10.1016/j.aim.2015.09.011
- Stefan Schwede, Categories and orbispaces, Algebr. Geom. Topol. 19 (2019), no. 6, 3171–3215. MR 4023338, DOI 10.2140/agt.2019.19.3171
- Richard Steiner, The algebra of directed complexes, Appl. Categ. Structures 1 (1993), no. 3, 247–284. MR 1254739, DOI 10.1007/BF00873990
- Richard Steiner, Omega-categories and chain complexes, Homology Homotopy Appl. 6 (2004), no. 1, 175–200. MR 2061574, DOI 10.4310/HHA.2004.v6.n1.a12
- Ross Street, Limits indexed by category-valued $2$-functors, J. Pure Appl. Algebra 8 (1976), no. 2, 149–181. MR 401868, DOI 10.1016/0022-4049(76)90013-X
- Ross Street, Parity complexes, Cahiers Topologie Géom. Différentielle Catég. 32 (1991), no. 4, 315–343 (English, with French summary). MR 1165827
- R. W. Thomason, Cat as a closed model category, Cahiers Topologie Géom. Différentielle 21 (1980), no. 3, 305–324. MR 591388
- Dominic Verity, Enriched categories, internal categories and change of base, PhD thesis, Cambridge University, 1992.
- Dominic Verity, Complicial sets characterising the simplicial nerves of strict $\omega$-categories, Mem. Amer. Math. Soc. 193 (2008), no. 905, xvi+184. MR 2399898, DOI 10.1090/memo/0905
- D. R. B. Verity, Weak complicial sets. I. Basic homotopy theory, Adv. Math. 219 (2008), no. 4, 1081–1149. MR 2450607, DOI 10.1016/j.aim.2008.06.003
Bibliographic Information
- Philip Hackney
- Affiliation: Department of Mathematics, University of Louisiana at Lafayette, Louisiana
- MR Author ID: 758568
- ORCID: 0000-0001-8050-7431
- Email: philip@phck.net
- Viktoriya Ozornova
- Affiliation: Max Planck Institute for Mathematics, Bonn, Germany
- MR Author ID: 1124392
- Email: viktoriya.ozornova@mpim-bonn.mpg.de
- Emily Riehl
- Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland
- MR Author ID: 718246
- Email: eriehl@jhu.edu
- Martina Rovelli
- Affiliation: Department of Mathematics and Statistics, University of Massachusetts Amherst, Massachusetts
- MR Author ID: 1204481
- Email: rovelli@math.umass.edu
- Received by editor(s): July 1, 2021
- Received by editor(s) in revised form: May 6, 2022, and July 5, 2022
- Published electronically: October 3, 2022
- Additional Notes: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140, which began while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2020 semester. The authors learned a lot from fruitful discussions with the other members of the MSRI-based working group on $(\infty ,2)$-categories. This work was supported by a grant from the Simons Foundation (#850849, PH). The second author thankfully acknowledges the financial support by the DFG grant OZ 91/2-1 with the project nr. 442418934. The third author was supported from the NSF via DMS-1652600, from the ARO under MURI Grant W911NF-20-1-0082, from the AFOSR under award number FA9550-21-1-0009, and by the Johns Hopkins President’s Frontier Award program. The fourth author is deeply appreciative of the Mathematical Sciences Institute at the Australian National University for their support during the pandemic year.
- © Copyright 2022 by the authors
- Journal: Trans. Amer. Math. Soc. 376 (2023), 555-597
- MSC (2020): Primary 18N65; Secondary 55U35, 18N10
- DOI: https://doi.org/10.1090/tran/8783
- MathSciNet review: 4510118