Imitator homomorphisms for special cube complexes
HTML articles powered by AMS MathViewer
- by Sam Shepherd;
- Trans. Amer. Math. Soc. 376 (2023), 599-641
- DOI: https://doi.org/10.1090/tran/8786
- Published electronically: October 24, 2022
- HTML | PDF | Request permission
Abstract:
Central to the theory of special cube complexes is Haglund and Wise’s construction of the canonical completion and retraction, which enables one to build finite covers of special cube complexes in a highly controlled manner. In this paper we give a new interpretation of this construction using what we call imitator homomorphisms. This provides fresh insight into the construction and enables us to prove various new results about finite covers of special cube complexes – most of which generalise existing theorems of Haglund–Wise to the non-hyperbolic setting. In particular, we prove a convex version of omnipotence for virtually special cubulated groups.References
- Ian Agol, Daniel Groves, and Jason Fox Manning, An alternate proof of Wise’s malnormal special quotient theorem, Forum Math. Pi 4 (2016), e1, 54. MR 3456181, DOI 10.1017/fmp.2015.8
- Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553
- Jitendra Bajpai, Omnipotence of surface groups, Master’s Thesis, McGill University, 2007.
- Hyman Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), no. 1-2, 3–47. MR 1239551, DOI 10.1016/0022-4049(93)90085-8
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Jason A. Behrstock and Walter D. Neumann, Quasi-isometric classification of non-geometric 3-manifold groups, J. Reine Angew. Math. 669 (2012), 101–120. MR 2980453, DOI 10.1515/crelle.2011.143
- B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66. MR 2922380, DOI 10.1142/S0218196712500166
- Nicolas Bergeron and Daniel T. Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012), no. 3, 843–859. MR 2931226, DOI 10.1353/ajm.2012.0020
- Martin R. Bridson and Henry Wilton, The triviality problem for profinite completions, Invent. Math. 202 (2015), no. 2, 839–874. MR 3418245, DOI 10.1007/s00222-015-0578-8
- Indira Chatterji, Talia Fernós, and Alessandra Iozzi, The median class and superrigidity of actions on $\rm CAT(0)$ cube complexes, J. Topol. 9 (2016), no. 2, 349–400. With an appendix by Pierre-Emmanuel Caprace. MR 3509968, DOI 10.1112/jtopol/jtu025
- Andreas W. M. Dress and Rudolf Scharlau, Gated sets in metric spaces, Aequationes Math. 34 (1987), no. 1, 112–120. MR 915878, DOI 10.1007/BF01840131
- Eduard Einstein, Hierarchies for relatively hyperbolic virtually special groups, arXiv:1903.12284, 2019.
- Elia Fioravanti, Coarse-median preserving automorphisms, arXiv:2101.04415 (2021).
- Anthony Genevois, Coning-off $\rm CAT(0)$ cube complexes, Ann. Inst. Fourier (Grenoble) 71 (2021), no. 4, 1535–1599 (English, with English and French summaries). MR 4398242, DOI 10.5802/aif.3430
- Daniel Groves and Jason Fox Manning, Specializing cubulated relatively hyperbolic groups, J. Topol. 15 (2022), no. 2, 398–442. MR 4413505, DOI 10.1112/topo.12226
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Mark Hagen, Lecture notes on CAT(0) cube complexes, median graphs, and cubulating groups, 2019, https://www.wescac.net/into_the_forest.pdf.
- John Hempel, Residual finiteness for $3$-manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 379–396. MR 895623
- Susan Hermiller and John Meier, Algorithms and geometry for graph products of groups, J. Algebra 171 (1995), no. 1, 230–257. MR 1314099, DOI 10.1006/jabr.1995.1010
- Jingyin Huang, Commensurability of groups quasi-isometric to RAAGs, Invent. Math. 213 (2018), no. 3, 1179–1247. MR 3842063, DOI 10.1007/s00222-018-0803-3
- Tim Hsu and Daniel T. Wise, On linear and residual properties of graph products, Michigan Math. J. 46 (1999), no. 2, 251–259. MR 1704150, DOI 10.1307/mmj/1030132408
- Frédéric Haglund and Daniel T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), no. 5, 1551–1620. MR 2377497, DOI 10.1007/s00039-007-0629-4
- G. Christopher Hruska and Daniel T. Wise, Packing subgroups in relatively hyperbolic groups, Geom. Topol. 13 (2009), no. 4, 1945–1988. MR 2497315, DOI 10.2140/gt.2009.13.1945
- Frédéric Haglund and Daniel T. Wise, A combination theorem for special cube complexes, Ann. of Math. (2) 176 (2012), no. 3, 1427–1482. MR 2979855, DOI 10.4007/annals.2012.176.3.2
- Ilya Kapovich and Daniel T. Wise, The equivalence of some residual properties of word-hyperbolic groups, J. Algebra 223 (2000), no. 2, 562–583. MR 1735163, DOI 10.1006/jabr.1999.8104
- Ashot Minasyan, Separable subsets of GFERF negatively curved groups, J. Algebra 304 (2006), no. 2, 1090–1100. MR 2264291, DOI 10.1016/j.jalgebra.2006.03.050
- Ashot Minasyan, Hereditary conjugacy separability of right-angled Artin groups and its applications, Groups Geom. Dyn. 6 (2012), no. 2, 335–388. MR 2914863, DOI 10.4171/GGD/160
- Eduardo Oregón-Reyes, On cubulated relatively hyperbolic groups, arXiv:2101.04415 (2020).
- Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295–326. MR 2270456, DOI 10.1007/s00222-006-0012-3
- Luis Ribes and Pavel Zalesskii, Profinite groups, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 40, Springer-Verlag, Berlin, 2010. MR 2599132, DOI 10.1007/978-3-642-01642-4
- Jacek Świȧtkowski, Regular path systems and (bi)automatic groups, Geom. Dedicata 118 (2006), 23–48. MR 2239447, DOI 10.1007/s10711-005-9003-6
- Jean-Pierre Serre, Arbres, amalgames, $\textrm {SL}_{2}$, Astérisque, No. 46, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass. MR 476875
- Herman Servatius, Automorphisms of graph groups, J. Algebra 126 (1989), no. 1, 34–60. MR 1023285, DOI 10.1016/0021-8693(89)90319-0
- Sam Shepherd, Agol’s theorem on hyperbolic cubulations, Rocky Mountain J. Math. 51 (2021), no. 3, 1037–1073. MR 4298826, DOI 10.1216/rmj.2021.51.1037
- Sam Shepherd and Daniel J. Woodhouse, Quasi-isometric rigidity for graphs of virtually free groups with two-ended edge groups, J. Reine Angew. Math. 782 (2022), 121–173. MR 4360010, DOI 10.1515/crelle-2021-0067
- Peter Scott and Terry Wall, Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 137–203. MR 564422
- Michah Sageev and Daniel T. Wise, The Tits alternative for $\textrm {CAT}(0)$ cubical complexes, Bull. London Math. Soc. 37 (2005), no. 5, 706–710. MR 2164832, DOI 10.1112/S002460930500456X
- M. van de Vel, Matching binary convexities, Topology Appl. 16 (1983), no. 3, 207–235. MR 722115, DOI 10.1016/0166-8641(83)90019-6
- Henry Wilton, Virtual retractions, conjugacy separability and omnipotence, J. Algebra 323 (2010), no. 2, 323–335. MR 2564841, DOI 10.1016/j.jalgebra.2009.10.009
- Daniel T. Wise, The structure of groups with a quasiconvex hierarchy, Annals of Mathematics Studies, vol. 209, Princeton University Press, Princeton, NJ, [2021] ©2021. MR 4298722
- Daniel T. Wise, Subgroup separability of graphs of free groups with cyclic edge groups, Q. J. Math. 51 (2000), no. 1, 107–129. MR 1760573, DOI 10.1093/qmathj/50.1.107
- Daniel T. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, vol. 117, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012. MR 2986461, DOI 10.1090/cbms/117
- Daniel T. Wise and Daniel J. Woodhouse, A cubical flat torus theorem and the bounded packing property, Israel J. Math. 217 (2017), no. 1, 263–281. MR 3625111, DOI 10.1007/s11856-017-1445-7
- P. A. Zalesskiĭ and O. I. Tavgen′, Closure of orbits and residual finiteness with respect to the conjugacy of free amalgamated products, Mat. Zametki 58 (1995), no. 4, 525–535, 639 (Russian, with Russian summary); English transl., Math. Notes 58 (1995), no. 3-4, 1042–1048 (1996). MR 1378333, DOI 10.1007/BF02305092
Bibliographic Information
- Sam Shepherd
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee
- MR Author ID: 1456926
- ORCID: 0000-0003-4346-1635
- Received by editor(s): September 15, 2021
- Received by editor(s) in revised form: July 6, 2022
- Published electronically: October 24, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 599-641
- MSC (2020): Primary 20F65; Secondary 57M10
- DOI: https://doi.org/10.1090/tran/8786
- MathSciNet review: 4510119