A class of inverse curvature flows and $L^p$ dual Christoffel-Minkowski problem
HTML articles powered by AMS MathViewer
- by Shanwei Ding and Guanghan Li;
- Trans. Amer. Math. Soc. 376 (2023), 697-752
- DOI: https://doi.org/10.1090/tran/8793
- Published electronically: October 14, 2022
- HTML | PDF | Request permission
Abstract:
In this paper, we consider a large class of expanding flows of closed, smooth, star-shaped hypersurface in Euclidean space $\mathbb {R}^{n+1}$ with speed $\psi u^\alpha \rho ^\delta f^{-\beta }$, where $\psi$ is a smooth positive function on unit sphere, $u$ is the support function of the hypersurface, $\rho$ is the radial function, $f$ is a smooth, symmetric, homogenous of degree one, positive function of the principal curvatures of the hypersurface on a convex cone. When $\psi =1$, we prove that the flow exists for all time and converges to infinity if $\alpha +\delta +\beta \leqslant 1$, and $\alpha \leqslant 0<\beta$, while in case $\alpha +\delta +\beta >1$, $\alpha ,\delta \leqslant 0<\beta$, the flow blows up in finite time, and where we assume the initial hypersurface to be strictly convex. In both cases the properly rescaled flows converge to a sphere centered at the origin. In particular, the results of Gerhardt [J. Differential Geom. 32 (1990), pp. 299–314; Calc. Var. Partial Differential Equations 49 (2014), pp. 471–489] and Urbas [Math. Z. 205 (1990), pp. 355–372] can be recovered by putting $\alpha =\delta =0$. Our previous works [Proc. Amer. Math. Soc. 148 (2020), pp. 5331–5341; J. Funct. Anal. 282 (2022), p. 38] and Hu, Mao, Tu and Wu [J. Korean Math. Soc. 57 (2020), pp. 1299–1322] can be recovered by putting $\delta =0$ and $\alpha =0$ respectively. By the convergence of these flows, we can give a new proof of uniqueness theorems for solutions to $L^p$-Minkowski problem and $L^p$-Christoffel-Minkowski problem with constant prescribed data. Similarly, we consider the $L^p$ dual Christoffel-Minkowski problem and prove a uniqueness theorem for solutions to $L^p$ dual Minkowski problem and $L^p$ dual Christoffel-Minkowski problem with constant prescribed data. At last, we focus on the long time existence and convergence of a class of anisotropic flows (i.e. for general function $\psi$). The final result not only gives a new proof of many previously known solutions to $L^p$ dual Minkowski problem, $L^p$-Christoffel-Minkowski problem, etc. by such anisotropic flows, but also provides solutions to $L^p$ dual Christoffel-Minkowski problem with some conditions.References
- A. Alexandroff, Existence and uniqueness of a convex surface with a given integral curvature, C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 (1942), 131–134. MR 7625
- B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 151–171., DOI 10.1007/BF01191340
- Ben Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom. 43 (1996), no. 2, 207–230. MR 1424425
- B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), no. 1, 151–161., DOI 10.1007/s002220050344
- Ben Andrews, Monotone quantities and unique limits for evolving convex hypersurfaces, Internat. Math. Res. Notices 20 (1997), 1001–1031. MR 1486693, DOI 10.1155/S1073792897000640
- Ben Andrews, Pinching estimates and motion of hypersurfaces by curvature functions, J. Reine Angew. Math. 608 (2007), 17–33. MR 2339467, DOI 10.1515/CRELLE.2007.051
- Ben Andrews and James McCoy, Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3427–3447. MR 2901219, DOI 10.1090/S0002-9947-2012-05375-X
- B. Andrews, J. McCoy, and Y. Zheng, Contracting convex hypersurfaces by curvature, Calc. Var. PDEs 47 (2013), 611–665., DOI 10.1007/s00526-012-0530-3
- Christian Berg, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969), no. 6, 64 pp. (1969) (French). MR 254789
- J. Lucas M. Barbosa, Jorge H. S. Lira, and Vladimir I. Oliker, A priori estimates for starshaped compact hypersurfaces with prescribed $m$th curvature function in space forms, Nonlinear problems in mathematical physics and related topics, I, Int. Math. Ser. (N. Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 35–52. MR 1970603, DOI 10.1007/978-1-4615-0777-2_{3}
- Károly J. Böröczky and Ferenc Fodor, The $L_p$ dual Minkowski problem for $p>1$ and $q>0$, J. Differential Equations 266 (2019), no. 12, 7980–8033. MR 3944247, DOI 10.1016/j.jde.2018.12.020
- Simon Brendle, Kyeongsu Choi, and Panagiota Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math. 219 (2017), no. 1, 1–16. MR 3765656, DOI 10.4310/ACTA.2017.v219.n1.a1
- Paul Bryan, Mohammad N. Ivaki, and Julian Scheuer, A unified flow approach to smooth, even $L_p$-Minkowski problems, Anal. PDE 12 (2019), no. 2, 259–280. MR 3861892, DOI 10.2140/apde.2019.12.259
- Paul Bryan, Mohammad N. Ivaki, and Julian Scheuer, Parabolic approaches to curvature equations, Nonlinear Anal. 203 (2021), Paper No. 112174, 24. MR 4172901, DOI 10.1016/j.na.2020.112174
- Heinz Otto Cordes, Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen, Math. Ann. 131 (1956), 278–312 (German). MR 91400, DOI 10.1007/BF01342965
- Bennett Chow, Deforming convex hypersurfaces by the $n$th root of the Gaussian curvature, J. Differential Geom. 22 (1985), no. 1, 117–138. MR 826427
- Bennett Chow, Deforming convex hypersurfaces by the square root of the scalar curvature, Invent. Math. 87 (1987), no. 1, 63–82. MR 862712, DOI 10.1007/BF01389153
- Bennett Chow and Robert Gulliver, Aleksandrov reflection and nonlinear evolution equations. I. The $n$-sphere and $n$-ball, Calc. Var. Partial Differential Equations 4 (1996), no. 3, 249–264. MR 1386736, DOI 10.1007/BF01254346
- Chuanqiang Chen, Yong Huang, and Yiming Zhao, Smooth solutions to the $L_p$ dual Minkowski problem, Math. Ann. 373 (2019), no. 3-4, 953–976. MR 3953117, DOI 10.1007/s00208-018-1727-3
- H. Chen, On a generalised Blaschke–Santalò inequality, Preprint, arXiv:1808.02218 (2018).
- Haodi Chen, Shibing Chen, and Qi-Rui Li, Variations of a class of Monge-Ampère-type functionals and their applications, Anal. PDE 14 (2021), no. 3, 689–716. MR 4259871, DOI 10.2140/apde.2021.14.689
- Haodi Chen and Qi-Rui Li, The $L_ p$ dual Minkowski problem and related parabolic flows, J. Funct. Anal. 281 (2021), no. 8, Paper No. 109139, 65. MR 4271790, DOI 10.1016/j.jfa.2021.109139
- Kai-Seng Chou and Xu-Jia Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006), no. 1, 33–83. MR 2254308, DOI 10.1016/j.aim.2005.07.004
- Shanwei Ding and Guanghan Li, A class of curvature flows expanded by support function and curvature function, Proc. Amer. Math. Soc. 148 (2020), no. 12, 5331–5341. MR 4163845, DOI 10.1090/proc/15189
- Shanwei Ding and Guanghan Li, A class of curvature flows expanded by support function and curvature function in the Euclidean space and hyperbolic space, J. Funct. Anal. 282 (2022), no. 3, Paper No. 109305, 38. MR 4339010, DOI 10.1016/j.jfa.2021.109305
- Klaus Ecker and Gerhard Huisken, Immersed hypersurfaces with constant Weingarten curvature, Math. Ann. 283 (1989), no. 2, 329–332. MR 980601, DOI 10.1007/BF01446438
- Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 141003, DOI 10.7146/math.scand.a-10510
- William J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 362045, DOI 10.1112/S0025579300005714
- W. J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematika 14 (1967), 1–13. MR 217699, DOI 10.1112/S0025579300007956
- Claus Gerhardt, Curvature flows in the sphere, J. Differential Geom. 100 (2015), no. 2, 301–347. MR 3343834
- Claus Gerhardt, Curvature problems, Series in Geometry and Topology, vol. 39, International Press, Somerville, MA, 2006. MR 2284727
- Claus Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299–314. MR 1064876
- Claus Gerhardt, Inverse curvature flows in hyperbolic space, J. Differential Geom. 89 (2011), no. 3, 487–527. MR 2879249
- Claus Gerhardt, Non-scale-invariant inverse curvature flows in Euclidean space, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 471–489. MR 3148124, DOI 10.1007/s00526-012-0589-x
- Pengfei Guan and Junfang Li, A mean curvature type flow in space forms, Int. Math. Res. Not. IMRN 13 (2015), 4716–4740. MR 3439091, DOI 10.1093/imrn/rnu081
- Pengfei Guan and Xi-Nan Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), no. 3, 553–577. MR 1961338, DOI 10.1007/s00222-002-0259-2
- Pengfei Guan and Chao Xia, $L^p$ Christoffel-Minkowski problem: the case $1<p<k+1$, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 69, 23. MR 3776359, DOI 10.1007/s00526-018-1341-y
- Changqing Hu, Xi-Nan Ma, and Chunli Shen, On the Christoffel-Minkowski problem of Firey’s $p$-sum, Calc. Var. Partial Differential Equations 21 (2004), no. 2, 137–155. MR 2085300, DOI 10.1007/s00526-003-0250-9
- Gerhard Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237–266. MR 772132
- Gerhard Huisken and Carlo Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45–70. MR 1719551, DOI 10.1007/BF02392946
- Jin-Hua Hu, Jing Mao, Qiang Tu, and Di Wu, A class of inverse curvature flows in $\Bbb R^{n+1}$, II, J. Korean Math. Soc. 57 (2020), no. 5, 1299–1322. MR 4169567, DOI 10.4134/JKMS.j190637
- Yong Huang, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math. 216 (2016), no. 2, 325–388. MR 3573332, DOI 10.1007/s11511-016-0140-6
- Yong Huang, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The $L_p$-Aleksandrov problem for $L_p$-integral curvature, J. Differential Geom. 110 (2018), no. 1, 1–29. MR 3851743, DOI 10.4310/jdg/1536285625
- Yong Huang and Yiming Zhao, On the $L_p$ dual Minkowski problem, Adv. Math. 332 (2018), 57–84. MR 3810248, DOI 10.1016/j.aim.2018.05.002
- Mohammad N. Ivaki and Alina Stancu, Volume preserving centro-affine normal flows, Comm. Anal. Geom. 21 (2013), no. 3, 671–685. MR 3078952, DOI 10.4310/CAG.2013.v21.n3.a9
- Mohammad N. Ivaki, Deforming a hypersurface by Gauss curvature and support function, J. Funct. Anal. 271 (2016), no. 8, 2133–2165. MR 3539348, DOI 10.1016/j.jfa.2016.07.003
- Mohammad N. Ivaki, Deforming a hypersurface by principal radii of curvature and support function, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Paper No. 1, 18. MR 3880311, DOI 10.1007/s00526-018-1462-3
- Qinian Jin and Yanyan Li, Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space, Discrete Contin. Dyn. Syst. 15 (2006), no. 2, 367–377. MR 2199434, DOI 10.3934/dcds.2006.15.367
- Heiko Kröner and Julian Scheuer, Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature, Math. Nachr. 292 (2019), no. 7, 1514–1529. MR 3982326, DOI 10.1002/mana.201700370
- N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), vol. 7, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. MR 901759, DOI 10.1007/978-94-010-9557-0
- L. Nirenberg, On a generalization of quasi-conformal mappings and its application to elliptic partial differential equations, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, Princeton University Press, Princeton, N. J.,1954, pp. 95C100.
- Boya Li, Hongjie Ju, and Yannan Liu, A flow method for a generalization of $L_p$ Christofell-Minkowski problem, Commun. Pure Appl. Anal. 21 (2022), no. 3, 785–796. MR 4389600, DOI 10.3934/cpaa.2021198
- Haizhong Li, Xianfeng Wang, and Yong Wei, Surfaces expanding by non-concave curvature functions, Ann. Global Anal. Geom. 55 (2019), no. 2, 243–279. MR 3923539, DOI 10.1007/s10455-018-9625-1
- Qi-Rui Li, Surfaces expanding by the power of the Gauss curvature flow, Proc. Amer. Math. Soc. 138 (2010), no. 11, 4089–4102. MR 2679630, DOI 10.1090/S0002-9939-2010-10431-8
- Qi-Rui Li, Weimin Sheng, and Xu-Jia Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 3, 893–923. MR 4055992, DOI 10.4171/jems/936
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022
- Erwin Lutwak and Vladimir Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), no. 1, 227–246. MR 1316557
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ dual curvature measures, Adv. Math. 329 (2018), 85–132. MR 3783409, DOI 10.1016/j.aim.2018.02.011
- Julian Scheuer, Gradient estimates for inverse curvature flows in hyperbolic space, Geom. Flows 1 (2015), no. 1, 11–16. MR 3338988, DOI 10.1515/geofl-2015-0002
- Julian Scheuer and Chao Xia, Locally constrained inverse curvature flows, Trans. Amer. Math. Soc. 372 (2019), no. 10, 6771–6803. MR 4024538, DOI 10.1090/tran/7949
- Julian Scheuer, Non-scale-invariant inverse curvature flows in hyperbolic space, Calc. Var. Partial Differential Equations 53 (2015), no. 1-2, 91–123. MR 3336314, DOI 10.1007/s00526-014-0742-9
- Julian Scheuer, Pinching and asymptotical roundness for inverse curvature flows in Euclidean space, J. Geom. Anal. 26 (2016), no. 3, 2265–2281. MR 3511477, DOI 10.1007/s12220-015-9627-1
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Oliver C. Schnürer, Surfaces expanding by the inverse Gaußcurvature flow, J. Reine Angew. Math. 600 (2006), 117–134. MR 2283800, DOI 10.1515/CRELLE.2006.088
- W. Sheng and C. Yi, A class of anisotropic expanding curvature flows, Discrete Contin. Dyn. Syst. 40 (2020), no. 4, 2017–2035., DOI 10.3934/dcds.2020104
- John I. E. Urbas, An expansion of convex hypersurfaces, J. Differential Geom. 33 (1991), no. 1, 91–125. MR 1085136
- John I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), no. 3, 355–372. MR 1082861, DOI 10.1007/BF02571249
Bibliographic Information
- Shanwei Ding
- Affiliation: School of Mathematics and Statistics, Wuhan University, Wuhan 430072, People’s Republic of China
- ORCID: 0000-0002-8383-5219
- Guanghan Li
- Affiliation: School of Mathematics and Statistics, Wuhan University, Wuhan 430072, People’s Republic of China
- Received by editor(s): March 12, 2022
- Received by editor(s) in revised form: July 13, 2022
- Published electronically: October 14, 2022
- Additional Notes: Shanwei Ding is the corresponding author
This research was partially supported by NSFC (Nos. 11871053 and 12261105). - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 697-752
- MSC (2020): Primary 35K55
- DOI: https://doi.org/10.1090/tran/8793
- MathSciNet review: 4510121