Nontransverse heterodimensional cycles: Stabilisation and robust tangencies
HTML articles powered by AMS MathViewer
- by Lorenzo J. Díaz and Sebastián A. Pérez;
- Trans. Amer. Math. Soc. 376 (2023), 891-944
- DOI: https://doi.org/10.1090/tran/8694
- Published electronically: October 28, 2022
- HTML | PDF | Request permission
Abstract:
We consider three-dimensional diffeomorphisms having simultaneously heterodimensional cycles and heterodimensional tangencies associated to saddle-foci. These cycles lead to a completely nondominated bifurcation setting. For every $r{\geqslant } 2$, we exhibit a class of such diffeomorphisms whose heterodimensional cycles can be $C^r$ stabilised and (simultaneously) approximated by diffeomorphisms with $C^r$ robust homoclinic tangencies. The complexity of our nondominated setting with plenty of homoclinic and heteroclinic intersections is used to overcome the difficulty of performing $C^r$ perturbations, $r\geqslant 2$, which are remarkably more difficult than $C^1$ ones. Our proof is reminiscent of the Palis-Takens’ approach to get surface diffeomorphisms with infinitely many sinks (Newhouse phenomenon) in the unfolding of homoclinic tangencies of surface diffeomorphisms. This proof involves a scheme of renormalisation along nontransverse heteroclinic orbits converging to a center-unstable Hénon-like family displaying blender-horseshoes. A crucial step is the analysis of the embeddings of these blender-horseshoes in a nondominated context.References
- Masayuki Asaoka, Hyperbolic sets exhibiting $C^1$-persistent homoclinic tangency for higher dimensions, Proc. Amer. Math. Soc. 136 (2008), no. 2, 677–686. MR 2358509, DOI 10.1090/S0002-9939-07-09115-0
- Pablo G. Barrientos, Yuri Ki, and Artem Raibekas, Symbolic blender-horseshoes and applications, Nonlinearity 27 (2014), no. 12, 2805–2839. MR 3291132, DOI 10.1088/0951-7715/27/12/2805
- Pablo G. Barrientos and Sebastián A. Pérez, Robust heteroclinic tangencies, Bull. Braz. Math. Soc. (N.S.) 51 (2020), no. 4, 1041–1056. MR 4167702, DOI 10.1007/s00574-019-00185-6
- Pablo G. Barrientos and Artem Raibekas, Robust tangencies of large codimension, Nonlinearity 30 (2017), no. 12, 4369–4409. MR 3734140, DOI 10.1088/1361-6544/aa8818
- Jairo Bochi, Christian Bonatti, and Lorenzo J. Díaz, Robust criterion for the existence of nonhyperbolic ergodic measures, Comm. Math. Phys. 344 (2016), no. 3, 751–795. MR 3508160, DOI 10.1007/s00220-016-2644-5
- C. Bonatti, L. J. Díaz, and S. Kiriki, Stabilization of heterodimensional cycles, Nonlinearity 25 (2012), no. 4, 931–960. MR 2891553, DOI 10.1088/0951-7715/25/4/931
- Ch. Bonatti, S. Crovisier, L. J. Díaz, and N. Gourmelon, Internal perturbations of homoclinic classes: non-domination, cycles, and self-replication, Ergodic Theory Dynam. Systems 33 (2013), no. 3, 739–776. MR 3062900, DOI 10.1017/S0143385712000028
- C. Bonatti, Survey: Towards a global view of dynamical systems, for the $C^1$-topology, Ergodic Theory Dynam. Systems 31 (2011), no. 4, 959–993. MR 2818683, DOI 10.1017/S0143385710000891
- Christian Bonatti and Lorenzo Díaz, Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu 7 (2008), no. 3, 469–525. MR 2427422, DOI 10.1017/S1474748008000030
- Christian Bonatti and Lorenzo J. Díaz, Abundance of $C^1$-robust homoclinic tangencies, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5111–5148. MR 2931324, DOI 10.1090/S0002-9947-2012-05445-6
- Sylvain Crovisier and Enrique R. Pujals, Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms, Invent. Math. 201 (2015), no. 2, 385–517. MR 3370619, DOI 10.1007/s00222-014-0553-9
- Sylvain Crovisier, Martin Sambarino, and Dawei Yang, Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 1, 1–49. MR 3312402, DOI 10.4171/JEMS/497
- L. J. Díaz, A. Nogueira, and E. R. Pujals, Heterodimensional tangencies, Nonlinearity 19 (2006), no. 11, 2543–2566. MR 2267717, DOI 10.1088/0951-7715/19/11/003
- Lorenzo J. Díaz, Katrin Gelfert, and Bruno Santiago, Weak$*$ and entropy approximation of nonhyperbolic measures: a geometrical approach, Math. Proc. Cambridge Philos. Soc. 169 (2020), no. 3, 507–545. MR 4170615, DOI 10.1017/s0305004119000276
- Lorenzo J. Díaz, Shin Kiriki, and Katsutoshi Shinohara, Blenders in centre unstable Hénon-like families: with an application to heterodimensional bifurcations, Nonlinearity 27 (2014), no. 3, 353–378. MR 3168258, DOI 10.1088/0951-7715/27/3/353
- Lorenzo J. Díaz and Sebastian A. Pérez, Hénon-like families and blender-horseshoes at nontransverse heterodimensional cycles, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 29 (2019), no. 3, 1930006, 22. MR 3933669, DOI 10.1142/S0218127419300064
- Lorenzo J. Díaz and Sebastián A. Pérez, Blender-horseshoes in center-unstable Hénon-like families, New trends in one-dimensional dynamics, Springer Proc. Math. Stat., vol. 285, Springer, Cham, [2019] ©2019, pp. 137–163. MR 4043213, DOI 10.1007/978-3-030-16833-9_{8}
- S. V. Gonchenko, V. S. Gonchenko, and J. C. Tatjer, Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps, Regul. Chaotic Dyn. 12 (2007), no. 3, 233–266. MR 2350324, DOI 10.1134/S156035470703001X
- S. V. Gonchenko, I. I. Ovsyannikov, C. Simó, and D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 11, 3493–3508. MR 2197744, DOI 10.1142/S0218127405014180
- S. V. Gonchenko, L. P. Shilnikov, and O. V. Stenkin, On Newhouse regions with infinitely many stable and unstable invariant tori, Progress in nonlinear science, Vol. 1 (Nizhny Novgorod, 2001) RAS, Inst. Appl. Phys., Nizhniy Novgorod, 2002, pp. 80–102. MR 1965026
- S. V. Gonchenko, L. P. Shilnikov, and D. V. Turaev, On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. I, Nonlinearity 21 (2008), no. 5, 923–972. MR 2412321, DOI 10.1088/0951-7715/21/5/003
- Shin Kiriki and Teruhiko Soma, $C^2$-robust heterodimensional tangencies, Nonlinearity 25 (2012), no. 12, 3277–3299. MR 2993053, DOI 10.1088/0951-7715/25/12/3277
- D. Li and D. Turaev, Persistence of heterodimensional cycles, Preprint, arXiv:2105.03739v1, 2021.
- Carlos Gustavo Moreira, There are no $C^1$-stable intersections of regular Cantor sets, Acta Math. 206 (2011), no. 2, 311–323. MR 2810854, DOI 10.1007/s11511-011-0064-0
- Sheldon E. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 101–151. MR 556584, DOI 10.1007/BF02684771
- Sheldon E. Newhouse, Nondensity of axiom $\textrm {A}(\textrm {a})$ on $S^{2}$, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Proc. Sympos. Pure Math., XIV-XVI, Amer. Math. Soc., Providence, RI, 1970, pp. 191–202. MR 277005
- J. Palis and F. Takens, Hyperbolicity and the creation of homoclinic orbits, Ann. of Math. (2) 125 (1987), no. 2, 337–374. MR 881272, DOI 10.2307/1971313
- J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math. (2) 140 (1994), no. 1, 207–250. MR 1289496, DOI 10.2307/2118546
- Jacob Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque 261 (2000), xiii–xiv, 335–347 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755446
- Jacob Palis and Floris Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, vol. 35, Cambridge University Press, Cambridge, 1993. Fractal dimensions and infinitely many attractors. MR 1237641
- Enrique R. Pujals and Martín Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2) 151 (2000), no. 3, 961–1023. MR 1779562, DOI 10.2307/121127
- Neptalí Romero, Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dynam. Systems 15 (1995), no. 4, 735–757. MR 1346398, DOI 10.1017/S0143385700008634
- Laura Tedeschini-Lalli and James A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks?, Comm. Math. Phys. 106 (1986), no. 4, 635–657. MR 860314, DOI 10.1007/BF01463400
Bibliographic Information
- Lorenzo J. Díaz
- Affiliation: Departamento de Matemática PUC-Rio, Marquês de São Vicente 225, Gávea, Rio de Janeiro 225453-900, Brazil
- ORCID: 0000-0002-4631-7201
- Email: lodiaz@mat.puc-rio.br
- Sebastián A. Pérez
- Affiliation: Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile
- ORCID: 0000-0003-3520-6837
- Email: sebastian.perez.o@pucv.cl
- Received by editor(s): November 17, 2020
- Received by editor(s) in revised form: March 1, 2022
- Published electronically: October 28, 2022
- Additional Notes: This paper is part of the PhD thesis of SP (PUC-Rio) supported by CNPq and CAPES - Finance Code 001 (Brazil). The first author was partially supported by INCTMat-Faperj (E26/200.866/2018) and CNPq (Brazil). The second author was partially supported by FONDECYT Iniciación No. 11220583 (Chile). The authors thank the hospitality of CMUP, PUC (Chile), and USACH (Chile)
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 891-944
- MSC (2020): Primary 37C20; Secondary 37C29, 37D20, 37D30
- DOI: https://doi.org/10.1090/tran/8694
- MathSciNet review: 4531665
Dedicated: To Jacob Palis, in the occasion of his 80th birthday