Twisted quantum affinizations and quantization of extended affine lie algebras
HTML articles powered by AMS MathViewer
- by Fulin Chen, Naihuan Jing, Fei Kong and Shaobin Tan;
- Trans. Amer. Math. Soc. 376 (2023), 969-1039
- DOI: https://doi.org/10.1090/tran/8706
- Published electronically: October 28, 2022
- HTML | PDF | Request permission
Abstract:
In this paper, for an arbitrary Kac-Moody Lie algebra ${\mathfrak g}$ and a diagram automorphism $\mu$ of ${\mathfrak g}$ satisfying certain natural linking conditions, we introduce and study a $\mu$-twisted quantum affinization algebra ${\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right )$ of ${\mathfrak g}$. When ${\mathfrak g}$ is of finite type, ${\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right )$ is Drinfeld’s current algebra realization of the twisted quantum affine algebra. When $\mu =\mathrm {id}$ and ${\mathfrak g}$ in affine type, ${\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right )$ is the quantum toroidal algebra introduced by Ginzburg, Kapranov and Vasserot. As the main results of this paper, we first prove a triangular decomposition for ${\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right )$. Second, we give a simple characterization of the affine quantum Serre relations on restricted ${\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right )$-modules in terms of “normal order products”. Third, we prove that the category of restricted ${\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right )$-modules is a monoidal category and hence obtain a topological Hopf algebra structure on the “restricted completion” of ${\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right )$. Last, we study the classical limit of ${\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right )$ and abridge it to the quantization theory of extended affine Lie algebras. In particular, based on a classification result of Allison-Berman-Pianzola, we obtain the $\hbar$-deformation of all nullity $2$ extended affine Lie algebras.References
- Bruce N. Allison, Saeid Azam, Stephen Berman, Yun Gao, and Arturo Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126 (1997), no. 603, x+122. MR 1376741, DOI 10.1090/memo/0603
- Bruce N. Allison, Stephen Berman, Yun Gao, and Arturo Pianzola, A characterization of affine Kac-Moody Lie algebras, Comm. Math. Phys. 185 (1997), no. 3, 671–688. MR 1463057, DOI 10.1007/s002200050105
- Bruce Allison, Stephen Berman, and Arturo Pianzola, Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 2, 327–385. MR 3161286, DOI 10.4171/JEMS/435
- Bruce N. Allison and Yun Gao, The root system and the core of an extended affine Lie algebra, Selecta Math. (N.S.) 7 (2001), no. 2, 149–212. MR 1860013, DOI 10.1007/PL00001400
- Jonathan Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568. MR 1301623, DOI 10.1007/BF02099423
- Stephen Berman, Yun Gao, and Yaroslav S. Krylyuk, Quantum tori and the structure of elliptic quasi-simple Lie algebras, J. Funct. Anal. 135 (1996), no. 2, 339–389. MR 1370607, DOI 10.1006/jfan.1996.0013
- Fulin Chen, Shaobin Tan, and Qing Wang, Twisted $\Gamma$-Lie algebras and their vertex operator representations, J. Algebra 442 (2015), 202–232. MR 3395060, DOI 10.1016/j.jalgebra.2014.11.009
- Fulin Chen, Naihuan Jing, Fei Kong, and Shaobin Tan, Twisted quantum affinizations and their vertex representations, J. Math. Phys. 59 (2018), no. 8, 081701, 13. MR 3835060, DOI 10.1063/1.5023790
- Fulin Chen, Naihuan Jing, Fei Kong, and Shaobin Tan, Twisted toroidal Lie algebras and Moody-Rao-Yokonuma presentation, Sci. China Math. 64 (2021), no. 6, 1181–1200. MR 4268889, DOI 10.1007/s11425-019-1615-x
- Fulin Chen, Naihuan Jing, Fei Kong, and Shaobin Tan, Drinfeld-type presentations of loop algebras, Trans. Amer. Math. Soc. 373 (2020), no. 11, 7713–7753. MR 4169672, DOI 10.1090/tran/8120
- Fulin Chen, Naihuan Jing, Fei Kong, and Shaobin Tan, On quantum toroidal algebra of type $A_1$, J. Pure Appl. Algebra 226 (2022), no. 1, Paper No. 106814, 17. MR 4273085, DOI 10.1016/j.jpaa.2021.106814
- V. Chernousov, P. Gille, and A. Pianzola, Conjugacy theorems for loop reductive group schemes and Lie algebras, Bull. Math. Sci. 4 (2014), no. 2, 281–324. MR 3228576, DOI 10.1007/s13373-014-0052-8
- V. Chernousov, E. Neher, and A. Pianzola, On conjugacy of Cartan subalgebras in non-FGC Lie tori, Transform. Groups 21 (2016), no. 4, 1003–1037. MR 3569565, DOI 10.1007/s00031-016-9400-y
- V. Chernousov, E. Neher, and A. Pianzola, Conjugacy of Cartan subalgebras in EALAs with a non-fgc centreless core, Trans. Moscow Math. Soc. 78 (2017), 235–256. MR 3738087, DOI 10.1090/mosc/271
- V. Chernousov, E. Neher, A. Pianzola, and U. Yahorau, On conjugacy of Cartan subalgebras in extended affine Lie algebras, Adv. Math. 290 (2016), 260–292. MR 3451924, DOI 10.1016/j.aim.2015.11.038
- Vyjayanthi Chari and Andrew Pressley, Twisted quantum affine algebras, Comm. Math. Phys. 196 (1998), no. 2, 461–476. MR 1645027, DOI 10.1007/s002200050431
- Ilaria Damiani, Drinfeld realization of affine quantum algebras: the relations, Publ. Res. Inst. Math. Sci. 48 (2012), no. 3, 661–733. MR 2973398, DOI 10.2977/PRIMS/86
- Ilaria Damiani, From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: injectivity, Publ. Res. Inst. Math. Sci. 51 (2015), no. 1, 131–171. MR 3367090, DOI 10.4171/PRIMS/150
- Jintai Ding and Kenji Iohara, Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys. 41 (1997), no. 2, 181–193. MR 1463869, DOI 10.1023/A:1007341410987
- V. Drinfeld. Hopf algebras and quantum Yang-Baxter equation. Soviet Math. Dokl., 283, 1060–1064, 1985.
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- Pavel Etingof and David Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), no. 1, 1–41. MR 1403351, DOI 10.1007/BF01587938
- Pavel Etingof and David Kazhdan, Quantization of Lie bialgebras. VI. Quantization of generalized Kac-Moody algebras, Transform. Groups 13 (2008), no. 3-4, 527–539. MR 2452604, DOI 10.1007/s00031-008-9029-6
- B. Enriquez, On correlation functions of Drinfeld currents and shuffle algebras, Transform. Groups 5 (2000), no. 2, 111–120. MR 1762114, DOI 10.1007/BF01236465
- Benjamin Enriquez, PBW and duality theorems for quantum groups and quantum current algebras, J. Lie Theory 13 (2003), no. 1, 21–64. MR 1958574
- B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Representations of quantum toroidal ${\mathfrak {gl}}_n$, J. Algebra 380 (2013), 78–108. MR 3023228, DOI 10.1016/j.jalgebra.2012.12.029
- B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Branching rules for quantum toroidal $\mathfrak {gl}_n$, Adv. Math. 300 (2016), 229–274. MR 3534833, DOI 10.1016/j.aim.2016.03.019
- B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum continuous $\mathfrak {gl}_\infty$: tensor products of Fock modules and $\scr W_n$-characters, Kyoto J. Math. 51 (2011), no. 2, 365–392. MR 2793272, DOI 10.1215/21562261-1214384
- B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum toroidal $\mathfrak {gl}_1$-algebra: plane partitions, Kyoto J. Math. 52 (2012), no. 3, 621–659. MR 2959950, DOI 10.1215/21562261-1625217
- Igor B. Frenkel, Naihuan Jing, and Weiqiang Wang, Quantum vertex representations via finite groups and the McKay correspondence, Comm. Math. Phys. 211 (2000), no. 2, 365–393. MR 1754520, DOI 10.1007/s002200050817
- Jürgen Fuchs, Bert Schellekens, and Christoph Schweigert, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), no. 1, 39–97. MR 1403859, DOI 10.1007/BF02101182
- Yun Gao and Naihuan Jing, $U_q(\widehat {\mathfrak {g}\mathfrak {l}}_N)$ action on $\widehat {\mathfrak {g}\mathfrak {l}}_N$-modules and quantum toroidal algebras, J. Algebra 273 (2004), no. 1, 320–343. MR 2032463, DOI 10.1016/j.jalgebra.2003.09.046
- Victor Ginzburg, Mikhail Kapranov, and Éric Vasserot, Langlands reciprocity for algebraic surfaces, Math. Res. Lett. 2 (1995), no. 2, 147–160. MR 1324698, DOI 10.4310/MRL.1995.v2.n2.a4
- Philippe Gille and Arturo Pianzola, Torsors, reductive group schemes and extended affine Lie algebras, Mem. Amer. Math. Soc. 226 (2013), no. 1063, vi+112. MR 3052313, DOI 10.1090/S0065-9266-2013-00679-X
- P. Grossé, On quantum shuffle and quantum affine algebras, J. Algebra 318 (2007), no. 2, 495–519. MR 2371956, DOI 10.1016/S0021-8693(03)00307-7
- David Hernandez, Representations of quantum affinizations and fusion product, Transform. Groups 10 (2005), no. 2, 163–200. MR 2195598, DOI 10.1007/s00031-005-1005-9
- David Hernandez, Drinfeld coproduct, quantum fusion tensor category and applications, Proc. Lond. Math. Soc. (3) 95 (2007), no. 3, 567–608. MR 2368277, DOI 10.1112/plms/pdm017
- David Hernandez, Kirillov-Reshetikhin conjecture: the general case, Int. Math. Res. Not. IMRN 1 (2010), 149–193. MR 2576287, DOI 10.1093/imrn/rnp121
- David Hernandez, Quantum toroidal algebras and their representations, Selecta Math. (N.S.) 14 (2009), no. 3-4, 701–725. MR 2511196, DOI 10.1007/s00029-009-0502-4
- Raphael Høegh-Krohn and Bruno Torrésani, Classification and construction of quasisimple Lie algebras, J. Funct. Anal. 89 (1990), no. 1, 106–136. MR 1040958, DOI 10.1016/0022-1236(90)90006-7
- M. Jimbo. A q-difference analogue of $\U _q(\fg )$ and the Yang–Baxter equation. In Yang-Baxter Equation In Integrable Systems, 292–298. World Scientific, 1990.
- Nai Huan Jing, Twisted vertex representations of quantum affine algebras, Invent. Math. 102 (1990), no. 3, 663–690. MR 1074490, DOI 10.1007/BF01233443
- Naihuan Jing, Quantum Kac-Moody algebras and vertex representations, Lett. Math. Phys. 44 (1998), no. 4, 261–271. MR 1627867, DOI 10.1023/A:1007493921464
- Naihuan Jing and Honglian Zhang, Addendum to “Drinfeld realization of twisted quantum affine algebras” [MR2362678], Comm. Algebra 38 (2010), no. 9, 3484–3488. MR 2724232, DOI 10.1080/00927870902933213
- Naihuan Jing and Honglian Zhang, Drinfeld realization of quantum twisted affine algebras via braid group, Adv. Math. Phys. , posted on (2016), Art. ID 4843075, 15. MR 3534119, DOI 10.1155/2016/4843075
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc. 7 (1994), no. 2, 383–453. MR 1239507, DOI 10.1090/S0894-0347-1994-1239507-1
- V. G. Kac and S. P. Wang, On automorphisms of Kac-Moody algebras and groups, Adv. Math. 92 (1992), no. 2, 129–195. MR 1155464, DOI 10.1016/0001-8708(92)90063-Q
- Haisheng Li, A new construction of vertex algebras and quasi-modules for vertex algebras, Adv. Math. 202 (2006), no. 1, 232–286. MR 2218823, DOI 10.1016/j.aim.2005.03.008
- Haisheng Li, $\hslash$-adic quantum vertex algebras and their modules, Comm. Math. Phys. 296 (2010), no. 2, 475–523. MR 2608123, DOI 10.1007/s00220-010-1026-7
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI 10.1016/0001-8708(88)90056-4
- George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR 2759715, DOI 10.1007/978-0-8176-4717-9
- Robert V. Moody, Senapathi Eswara Rao, and Takeo Yokonuma, Toroidal Lie algebras and vertex representations, Geom. Dedicata 35 (1990), no. 1-3, 283–307. MR 1066569, DOI 10.1007/BF00147350
- Kei Miki, Toroidal and level $0\ U’_q(\widehat {\textrm {sl}_{n+1}})$ actions on $U_q(\widehat {\textrm {gl}_{n+1}})$ modules, J. Math. Phys. 40 (1999), no. 6, 3191–3210. MR 1694256, DOI 10.1063/1.533078
- Kei Miki, Representations of quantum toroidal algebra $U_q(\textrm {sl}_{n+1,\textrm {tor}})\ (n\geq 2)$, J. Math. Phys. 41 (2000), no. 10, 7079–7098. MR 1781425, DOI 10.1063/1.1287436
- Kei Miki, Some quotient algebras arising from the quantum toroidal algebra $U_q(\textrm {sl}_{n+1}({\scr C}_\gamma ))\ (n\geq 2)$, Osaka J. Math. 43 (2006), no. 4, 895–922. MR 2303555
- Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238. MR 1808477, DOI 10.1090/S0894-0347-00-00353-2
- Erhard Neher, Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 3, 90–96 (English, with English and French summaries). MR 2083842
- Erhard Neher, Extended affine Lie algebras and other generalizations of affine Lie algebras—a survey, Developments and trends in infinite-dimensional Lie theory, Progr. Math., vol. 288, Birkhäuser Boston, Boston, MA, 2011, pp. 53–126. MR 2743761, DOI 10.1007/978-0-8176-4741-4_{3}
- Yoshihisa Saito, Quantum toroidal algebras and their vertex representations, Publ. Res. Inst. Math. Sci. 34 (1998), no. 2, 155–177. MR 1617066, DOI 10.2977/prims/1195144759
- Y. Saito, K. Takemura, and D. Uglov, Toroidal actions on level $1$ modules of $U_q(\widehat {\mathrm {sl}}_n)$, Transform. Groups 3 (1998), no. 1, 75–102. MR 1603798, DOI 10.1007/BF01237841
- Kouichi Takemura and Denis Uglov, Level-$0$ action of $U_q(\widehat {\mathfrak {s}\mathfrak {l}}_n)$ on the $q$-deformed Fock spaces, Comm. Math. Phys. 190 (1998), no. 3, 549–583. MR 1600311, DOI 10.1007/s002200050252
- Aleksander Tsymbaliuk, Quantum affine Gelfand-Tsetlin bases and quantum toroidal algebra via $K$-theory of affine Laumon spaces, Selecta Math. (N.S.) 16 (2010), no. 2, 173–200. MR 2679480, DOI 10.1007/s00029-009-0013-3
- M. Varagnolo and E. Vasserot, Schur duality in the toroidal setting, Comm. Math. Phys. 182 (1996), no. 2, 469–483. MR 1447301, DOI 10.1007/BF02517898
- M. Varagnolo and E. Vasserot, Double-loop algebras and the Fock space, Invent. Math. 133 (1998), no. 1, 133–159. MR 1626481, DOI 10.1007/s002220050242
- Yoji Yoshii, Lie tori—a simple characterization of extended affine Lie algebras, Publ. Res. Inst. Math. Sci. 42 (2006), no. 3, 739–762. MR 2266995, DOI 10.2977/prims/1166642158
Bibliographic Information
- Fulin Chen
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- MR Author ID: 936518
- Email: chenf@xmu.edu.cn
- Naihuan Jing
- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
- MR Author ID: 232836
- ORCID: 0000-0002-2156-2569
- Email: jing@math.ncsu.edu
- Fei Kong
- Affiliation: Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, People’s Republic of China
- Email: kongmath@hunnu.edu.cn
- Shaobin Tan
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- Email: tans@xmu.edu.cn
- Received by editor(s): March 1, 2021
- Received by editor(s) in revised form: December 23, 2021, and March 8, 2022
- Published electronically: October 28, 2022
- Additional Notes: The first author was partially supported by the NSF of China (Nos. 11971397, 12161141001) and the Fundamental Research Funds for the Central Universities (No. 20720200067)
The second author was partially supported by the NSF of China (No. 12171303) and the Simons Foundation (No. 523868)
The fourth author was partially supported by the NSF of China (No. 12131018). - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 969-1039
- MSC (2020): Primary 17B37, 17B67
- DOI: https://doi.org/10.1090/tran/8706
- MathSciNet review: 4531667