Derangements and the $p$-adic incomplete gamma function
HTML articles powered by AMS MathViewer
- by Andrew O’Desky and David Harry Richman;
- Trans. Amer. Math. Soc. 376 (2023), 1065-1087
- DOI: https://doi.org/10.1090/tran/8716
- Published electronically: December 1, 2022
- HTML | PDF
Abstract:
We introduce a $p$-adic analogue of the incomplete gamma function. We also introduce quantities ($m$-values) associated to a function on natural numbers and prove a new characterization of $p$-adic continuity for functions with $p$-integral $m$-values. Combinatorial interpretations for the integral values of the incomplete gamma function and functions with $m$-values zero or one are obtained, which show that these functions count derangements in generalized symmetric groups and permutations with restricted cycle lengths.References
- William W. Adams, Transcendental numbers in the $P$-adic domain, Amer. J. Math. 88 (1966), 279–308. MR 197399, DOI 10.2307/2373193
- Yvette Amice, Interpolation $p$-adique, Bull. Soc. Math. France 92 (1964), 117–180 (French). MR 188199, DOI 10.24033/bsmf.1606
- Sami H. Assaf, Cyclic derangements, Electron. J. Combin. 17 (2010), no. 1, Research Paper 163, 14. MR 2745716, DOI 10.37236/435
- D. Barsky, Analyse $p$-adique et suites classiques de nombres, Séminaire Lotharingien de combinatoire, 1981.
- F. Bergeron, G. Labelle, and P. Leroux, Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press, Cambridge, 1998. Translated from the 1994 French original by Margaret Readdy; With a foreword by Gian-Carlo Rota. MR 1629341
- S. Chowla, I. N. Herstein, and W. R. Scott, The solutions of $x^d=1$ in symmetric groups, Norske Vid. Selsk. Forh., Trondheim 25 (1952), 29–31 (1953). MR 54605
- K. Conrad, Artin–Hasse-type series and roots of unity, 1994.
- Jack Diamond, The $p$-adic log gamma function and $p$-adic Euler constants, Trans. Amer. Math. Soc. 233 (1977), 321–337. MR 498503, DOI 10.1090/S0002-9947-1977-0498503-9
- NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
- D. Eric and R. Tanguy, On primary pseudo-polynomials (Around Ruzsa’s Conjecture), 2021.
- R. R. Hall, On pseudo-polynomials, Mathematika 18 (1971), 71–77. MR 294300, DOI 10.1112/S002557930000838X
- Mehdi Hassani, Derangements and applications, J. Integer Seq. 6 (2003), no. 1, Article 03.1.2, 8. MR 1971432
- Hideki Ishihara, Hiroyuki Ochiai, Yugen Takegahara, and Tomoyuki Yoshida, $p$-divisibility of the number of solutions of $x^p=1$ in a symmetric group, Ann. Comb. 5 (2001), no. 2, 197–210. MR 1904386, DOI 10.1007/PL00001300
- Vivian Kuperberg, On pseudo-polynomials divisible only by a sparse set of primes and $\alpha$-primary pseudo-polynomials, J. Number Theory 241 (2022), 531–541. MR 4472453, DOI 10.1016/j.jnt.2022.04.006
- K. Mahler, An interpolation series for continuous functions of a $p$-adic variable, J. Reine Angew. Math. 199 (1958), 23–34. MR 95821, DOI 10.1515/crll.1958.199.23
- Piotr Miska, Arithmetic properties of the sequence of derangements, J. Number Theory 163 (2016), 114–145. MR 3459564, DOI 10.1016/j.jnt.2015.11.014
- Yasuo Morita, A $p$-adic analogue of the $\Gamma$-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 2, 255–266. MR 424762
- M. Ram Murty, Introduction to $p$-adic analytic number theory, AMS/IP Studies in Advanced Mathematics, vol. 27, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. MR 1913413, DOI 10.1090/amsip/027
- M. Ram Murty and Sarah Sumner, On the $p$-adic series $\sum ^\infty _{n=1}n^k\cdot n!$, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 219–227. MR 2076598, DOI 10.1090/crmp/036/17
- Adrian M. Nelson, A generalized cyclotomic identity, Adv. Math. 83 (1990), no. 1, 1–29. MR 1069385, DOI 10.1016/0001-8708(90)90066-V
- Andrew O’Desky, Functions with integer-valued divided differences, J. Number Theory 234 (2022), 179–199. MR 4370534, DOI 10.1016/j.jnt.2021.06.020
- Vicenţiu Paşol and Alexandru Zaharescu, Sondow’s conjecture, convergents to $e$, and $p$-adic analytic functions, Math. Z. 292 (2019), no. 1-2, 499–511. MR 3968912, DOI 10.1007/s00209-019-02303-y
- Alain M. Robert, A course in $p$-adic analysis, Graduate Texts in Mathematics, vol. 198, Springer-Verlag, New York, 2000. MR 1760253, DOI 10.1007/978-1-4757-3254-2
- W. H. Schikhof, Ultrametric calculus, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 2006. An introduction to $p$-adic analysis; Reprint of the 1984 original [MR0791759]. MR 2444734
- I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen I, II, Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Klasse, pages 125–136, 152–173, 1929.
- Grzegorz Serafin, Identities behind some congruences for $r$-Bell and derangement polynomials, Res. Number Theory 6 (2020), no. 4, Paper No. 39, 8. MR 4159160, DOI 10.1007/s40993-020-00216-y
- Yidong Sun, Xiaojuan Wu, and Jujuan Zhuang, Congruences on the Bell polynomials and the derangement polynomials, J. Number Theory 133 (2013), no. 5, 1564–1571. MR 3007122, DOI 10.1016/j.jnt.2012.08.031
- Zhi-Wei Sun and Don Zagier, On a curious property of Bell numbers, Bull. Aust. Math. Soc. 84 (2011), no. 1, 153–158. MR 2817669, DOI 10.1017/S0004972711002218
Bibliographic Information
- Andrew O’Desky
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey
- MR Author ID: 1289808
- ORCID: 0000-0003-1068-7013
- Email: andy.odesky@gmail.com
- David Harry Richman
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington
- MR Author ID: 1194208
- ORCID: 0000-0002-0101-0521
- Email: hrichman@uw.edu
- Received by editor(s): April 13, 2021
- Received by editor(s) in revised form: January 15, 2022, March 8, 2022, and March 16, 2022
- Published electronically: December 1, 2022
- © Copyright 2022 by the authors
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1065-1087
- MSC (2020): Primary 33B20, 11S80, 11B75, 05A05
- DOI: https://doi.org/10.1090/tran/8716
- MathSciNet review: 4531669